Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674853

RESUMEN

The differential effects of UV-B on the inhibition or activation of protective mechanisms to maintain cells photosynthetically active were investigated in native microalgae. Four strains were used, including two Chlorella sorokiniana strains, F4 and LG1, isolated from a Mediterranean inland swamp and a recycled cigarette butt's substrate, respectively, and two isolates from an Ecuadorian highland lake related to Pectinodesmus pectinatus (PEC) and Ettlia pseudoalveolaris (ETI). Monocultures were exposed to acute UV-B (1.7 W m-2) over 18 h under controlled conditions. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments, non-enzymatic antioxidants, and chlorophyll a fluorescence, were evaluated at specific time points. Results showed that UV-B significantly compromised all the physiological parameters in F4, thereby resulting in the most UV-B-sensitive strain. Contrarily, UV-B exposure did not lead to changes in the PEC physiological traits, resulting in the best UV-B-resistant strain. This could be attributed to the acclimation to high light habitat, where maintaining a constitutive phenotype (at the photosynthetic level) is strategically advantageous. Differently, LG1 and ETI at 12 h of UV-B exposure showed different UV-B responses, which is probably related to acclimation, where in LG1, the pigments were recovered, and the antioxidants were still functioning, while in ETI, the accumulation of pigments and antioxidants was increased to avoid further photodamage. Consequently, the prolonged exposure in LG1 and ETI resulted in species-specific metabolic regulation (e.g., non-enzymatic antioxidants) in order to constrain full photoinhibition under acute UV-B.


Asunto(s)
Chlorella , Microalgas , Clorofila/metabolismo , Clorofila A , Microalgas/metabolismo , Chlorella/metabolismo , Ecuador , Fotosíntesis , Antioxidantes/metabolismo , Rayos Ultravioleta
2.
Plants (Basel) ; 11(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36145757

RESUMEN

In this study, the potential of ultraviolet B (UV-B) radiation to alleviate the effects of pollutants in cigarette butt wastewater (CBW) was investigated using different Chlorella sorokiniana strains (F4, R1 and LG1). Microalgae were treated with UV-B (1.7 W m-2) for 3 days prior to their exposure to CBW and then incubated for 4 days in the absence or presence of UV-B. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments and non-enzymatic antioxidants, as well as nicotine and nicotyrine removal, were evaluated in 7-day cultures. UV-B treatments did not negatively impact algal chlorophyll or carotenoid production. UV-B acclimation was strain-dependent, correlating with native environment adaptations and genetic constitutions. UV-B as a pretreatment had long-term positive effects on non-enzymatic antioxidant capacity. However, LG1 needed more time to readjust the pro-oxidant/antioxidant balance, as it was the most UV-B-sensitive. Phenolic compounds played an important role in the antioxidant system response to UV-B, while flavonoids did not contribute to the total antioxidant capacity. Although cross-resistance between UV-B and CBW was observed in F4 and R1, only R1 showed nicotine/nicotyrine catabolism induction due to UV-B. Overall, the results suggest that UV-B activates defense pathways associated with resistance or tolerance to nicotine and nicotyrine.

3.
Plants (Basel) ; 11(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807722

RESUMEN

Microalgal-based remediation is an ecofriendly and cost-effective system for wastewater treatment. This study evaluated the capacity of microalgae in the remediation of wastewater from cleaning process of smoked cigarette butts (CB). At laboratory scale, six strains (one from the family Scenedesmaceae, two Chlamydomonas debaryana and three Chlorella sorokiniana) were exposed to different CB wastewater dilutions to identify toxicity levels reflected in the alteration of microalgal physiological status and to determine the optimal conditions for an effective removal of contaminants. CB wastewater could impact on microalgal chlorophyll and carotenoid production in a concentration-dependent manner. Moreover, the resistance and remediation capacity did not only depend on the microalgal strain, but also on the chemical characteristics of the organic pollutants. In detail, nicotine was the most resistant pollutant to removal by the microalgae tested and its low removal correlated with the inhibition of photosynthetic pigments affecting microalgal growth. Concerning the optimal conditions for an effective bioremediation, this study demonstrated that the Chlamydomonas strain named F2 showed the best removal capacity to organic pollutants at 5% CB wastewater (corresponding to 25 butts L−1 or 5 g CB L−1) maintaining its growth and photosynthetic pigments at control levels.

4.
Foods ; 11(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35626969

RESUMEN

The Mediterranean diet has, among its cornerstones, the use of olive oil for its nutraceutical and organoleptic properties. Despite the numerous merits, olive-oil mill wastewater (OMWW), which is generated by the olive-oil extraction process, is one of the most serious environmental pollutants in the Mediterranean countries. The polluting potential of OMWW is due to its high content of tannins, polyphenols, polyalcohols, pectins and lipids. In order to close the recovery cycle of a fortified citrus olive oils previously developed, we tested the ability of five microalgae of the Chlorella group (SEC_LI_ChL_1, CL_Sc, CL_Ch, FB and Idr) in lowering the percentage of total phenolic compounds in vegetation water. This was obtained with three different extraction processes (conventional, and lemon and orange peels) at three concentrations each (10%, 25% and 50%). The results showed that strains Idr, FB and CL_Sc from the Lake Massaciuccoli can tolerate vegetation water from conventional and lemon peel extractions up to 25%; these strains can also reduce the phenolic compounds within the tests. The application of microalgae for OMWW treatment represents an interesting opportunity as well as an eco-friendly low-cost solution to be developed within companies as a full-scale approach, which could be applied to obtain a fortified microalgal biomass to be employed in nutraceutical fields.

5.
Plant Physiol Biochem ; 171: 169-181, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999508

RESUMEN

Physiological studies conducted mainly in metropolitan areas demonstrated that urban environments generate stressful conditions for plants. However, less attention has been paid to plant response to urban conditions in small cities. Here, we evaluated to what extent the health and physiological functions of some Mediterranean urban species [Quercus ilex L., Nerium oleander L. and Pittosporum tobira (Thunb.) W.T. Aiton] were impacted by urban and peri-urban conditions in Pisa (Italy), a small medieval city with narrow streets that impede efficient public transport causing oversized private transport. Experimental period spanned from late-summer to winter in concomitance with the sharp increase in air pollutants. Climate and air quality, soil physical and chemical properties, and plant physiological traits including leaf gas exchanges, chlorophyll fluorescence and leaf pigments were assessed. In soil, the organic carbon affected aggregates and water stability and the concentrations of some micro-elements decreased in winter. Air pollutants impaired leaf gas exchanges and photochemical processes at photosystem II, depending on species, season, and urban conditions. Shrubs were more susceptible than the tree species, highlighting that the latter adapted better to pollutants along an urban-peri-urban transect in Mediterranean environments. This study gives information on the physiological adaptability of some of the most frequent Mediterranean urban species to stressful conditions and demonstrated that, even in a small city, urban conditions influence the physiology and development of vegetation, affecting the plant health status and its ability to provide key ecosystem services.


Asunto(s)
Contaminantes Atmosféricos , Quercus , Contaminantes Atmosféricos/análisis , Ecosistema , Hojas de la Planta/química , Suelo , Árboles
6.
Vet Sci ; 8(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34357922

RESUMEN

ß-glucans can activate the animal innate immune system by acting as immune-modulators and inducing various stimulatory effects. The aim of this study was to investigate the effect of 1,3-1,6 ß-glucans administered orally for 96 h on Apis mellifera workers (newly emerged and nurse bees). ß-glucans were included in honey and syrup. Survival rate and phenoloxidase activity were measured. In both newly emerged and nurse bees, ß-glucans supplementation did not affect survival rate (p > 0.05). Conversely, phenoloxidase activity was higher in both newly emerged bees (p = 0.048) and nurse bees (p = 0.014) fed with a honey diet enriched with ß-glucans compared to those fed with only honey. In both the newly emerged and nurse bees, no statistical differences in phenoloxidase activity were recorded between the group fed with a syrup-based diet enriched with ß-glucans and the control group (p > 0.05). The absence of significant variation in survival suggests that the potential negative effect of ß-glucans in healthy bees could be mitigated by their metabolism. Conversely, the inclusion of ß-glucans in a honey-based diet determined an increase of phenoloxidase activity, suggesting that the effect of ß-glucan inclusion in the diet of healthy bees on phenoloxidase activity could be linked to the type of base-diet. Further investigations on ß-glucans metabolism in bees, on molecular mechanism of phenoloxidase activation by 1,3-1,6 ß-glucans, and relative thresholds are desirable. Moreover, investigation on the combined action of honey and ß-glucans on phenoloxidase activity are needed.

7.
Plants (Basel) ; 10(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922810

RESUMEN

Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m-2 d-1 may induce UV-B-specific signaling while 18.24 kJ m-2 d-1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa's geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.

8.
Front Plant Sci ; 11: 607651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362836

RESUMEN

Aquatic ecosystems represent one of the largest reservoirs of phytoplankton accounting for most of the primary production of the Earth. The Lake Massaciuccoli located in Tuscany (Italy) is one of the largest swamps that in ancient times entirely covered the Versilia coastal plain. Despite its peculiar features, especially the eutrophic characteristics, its native microalgal consortia have never been explored up to now. In this work, we isolated and described four autochthonous microalgal strains from different sites in the lake (FB, Idr, CL_Sc, and CL_Ch); the four microalgal strains were identified within the Chlorella sorokiniana clade. We exposed them to ten of the most common or emerging environmental contaminants in order to describe their preliminary response to the tested substances: five metals (As, Fe, Ni, Cu, and Zn), two herbicides (Metolachlor and Sethoxydim), two antibiotics (Ciprofloxacin and Benzylpenicillin) and a non-steroidal anti-inflammatory drug (Ibuprofen). Physiological response of the strains highlighted intraspecific differences; strain CL_Sc was the most tolerant in presence of metals while strain Idr was the most sensitive. All strains were sensitive to sethoxydim and tolerant to metolachlor at all the tested concentrations. Strains FB and Idr were the most sensitive in presence of Ibuprofen while strain CL_Ch was the most sensitive to the highest Benzylpenicillin concentration. Resistance pattern of strain Idr somehow reflects both the phylogenetic and the geographic "isolation" from all other three strains. Finally, optical microscope observation confirmed some differences also in the microalgae morphological aspect. Overall, all the strains showed interesting responses in presence of high concentrations of the tested substances, representing putative interesting candidates for water remediation in wastewater treatment plants.

9.
Plant Physiol Biochem ; 151: 181-187, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32224389

RESUMEN

Turfgrasses are monocotyledonous plants from the family Poaceae. They are widely used in green spaces and are considered one of the most economically important horticultural crops in the world. Turfgrass quality is affected by several environmental factors including light, which is involved in the quality decline of transplanted sod. Ultraviolet-B (UV-B) is an important regulator of plant growth and development. Plants growing and/or stored in protected systems, such as in sod production, may be more vulnerable to UV-B damage than those growing in the field due to acclimation. Few studies on the effects of UV-B on turfgrass physiology have been published. Therefore, the aim of this study was to evaluate the influence of UV-B irradiation on the photosynthetic performance of five cool-season turfgrasses, namely Agrostis stolonifera L., Festuca arundinacea Schreb., Poa supina Schrad., Poa pratensis L. and Lolium perenne L. Turfgrasses were exposed to 18.25 kJ m-2 d-1 biologically effective UV-B in growth chambers under controlled conditions. Measurements included photosynthetic pigments, chlorophyll fluorescence and gas exchanges monitored for 16 d-UV-B treatment and after recovery. Content of pigments decreased with UV-B exposure with significant differences among the species. UV-B also affected the photosystem II (PSII) efficiency depending on the exposure period and species. Similarly, gas exchange parameters showed different effects among species after UV-B exposure compromising the assimilation of CO2. Multivariate analysis highlighted three main clusters of species confirming their different UV-B tolerance and ability to restore PSII photochemistry after recovery, from which Festuca arundinacea resulted to be the most tolerant.


Asunto(s)
Agrostis/fisiología , Festuca/fisiología , Lolium/fisiología , Fotosíntesis , Poa/fisiología , Rayos Ultravioleta , Clorofila , Complejo de Proteína del Fotosistema II
10.
Sci Rep ; 10(1): 2654, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060345

RESUMEN

Ultraviolet (UV) radiation is a small fraction of the solar spectrum, which acts as a key environmental modulator of plant function affecting metabolic regulation and growth. Plant species endemic to the Andes are well adapted to the harsh features of high-altitude climate, including high UV radiation. Maca (Lepidium meyenii Walpers) is a member of Brassicaceae family native to the central Andes of Peru, which grows between 3500 and 4500 m of altitude, where only highland grasses and few hardy bushes can survive. Even though maca has been the focus of recent researches, mainly due to its nutraceutical properties, knowledge regarding its adaptation mechanisms to these particular natural environmental conditions is scarce. In this study, we manipulated solar UV radiation by using UV-transmitting (Control) or blocking (UV-block) filters under field conditions (4138 m above the sea level) in order to understand the impact of UV on morphological and physiological parameters of maca crops over a complete growing season. Compared to the UV-blocking filter, under control condition a significant increase of hypocotyl weight was observed during the vegetative phase together with a marked leaf turnover. Although parameters conferring photosynthetic performance were not altered by UV, carbohydrate allocation between above and underground organs was affected. Control condition did not influence the content of secondary metabolites such as glucosinolates and phenolic compounds in hypocotyls, while some differences were observed in the rosettes. These differences were mainly related to leaf turnover and the protection of new young leaves in control plants. Altogether, the data suggest that maca plants respond to strong UV radiation at high altitudes by a coordinated remobilization and relocation of metabolites between source and sink organs via a possible UV signaling pathway.


Asunto(s)
Altitud , Ecosistema , Lepidium/fisiología , Lepidium/efectos de la radiación , Rayos Ultravioleta , Clorofila A/metabolismo , Fluorescencia , Gases/metabolismo , Lepidium/crecimiento & desarrollo , Fotosíntesis/efectos de la radiación , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Metabolismo Secundario , Solubilidad , Almidón/análisis , Azúcares/análisis
11.
Front Plant Sci ; 10: 1078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611885

RESUMEN

Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.

12.
BMC Plant Biol ; 19(1): 186, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064341

RESUMEN

BACKGROUND: Ultraviolet-B (UV-B) radiation can affect several aspects ranging from plant growth to metabolic regulation. Maca is a Brassicaceae crop native to the Andes growing in above 3500 m of altitude. Although maca has been the focus mainly due to its nutraceutical properties, it remains unknown how maca plants tolerate to harsh environments, such as strong UV-B. Here, we present the first study that reports the physiological responses of maca plants to counteract and recover to repeated acute UV-B irradiation. RESULTS: In detail, plants were daily exposed to acute UV-B irradiation followed by a recovery period under controlled conditions. The results showed that repeated acute UV-B exposures reduced biomass and photosynthetic parameters, with gradual senescence induction in exposed leaves, reduction of young leaves expansion and root growth inhibition. Negative correlation between increased UV-B and recovery was observed, with marked production of new biomass in plants treated one week or more. CONCLUSIONS: A differential UV-B response was observed: stress response was mainly controlled by a coordinated source-sink carbon allocation, while acclimation process may require UV-B-specific systemic defense response reflected on the phenotypic plasticity of maca plants. Moreover, these differential UV-B responses were also suggested by multifactorial analysis based on biometric and physiological data.


Asunto(s)
Lepidium/fisiología , Lepidium/efectos de la radiación , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Clorofila A/química , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Almidón/efectos de la radiación , Rayos Ultravioleta
13.
Front Plant Sci ; 10: 408, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024585

RESUMEN

Promotion of nonfood species production to marginal, degraded lands abandoned by mainstream agriculture is affected by extremes of water availability (droughts and floods), which have increased in frequency and intensity and account for severe yield reduction. Arundo donax L., known as giant cane or giant reed, spontaneously grows in different kinds of environments with limitation to low temperature and is thus widespread in temperate and hot areas around the world. Moreover, this perennial rhizomatous grass has been recognized as a leading candidate crop in the Mediterranean for lignocellulosic feedstock due to its high C3 photosynthetic capacity, positive energy balance and low agroecological management demand. In this study, the photosynthetic performance and growth response of A. donax to waterlogging and submergence stress following a time course as well as their respective re-oxygenation were analyzed under reproducible and controlled environment conditions. Results of growth response showed that biomass production was strongly conditioned by the availability of oxygen. In fact, only waterlogged plants showed similar growth capacity to those under control conditions, while plants under submergence resulted in a dramatic reduction of this trait. The simultaneous measurements of both gas exchanges and chlorophyll fluorescence highlighted an alteration of both stomatal and non-stomatal photosynthetic behaviors during a short/medium period of oxygen deprivation and re-oxygenation. Photosynthetic CO2 uptake was strictly related to a combination of stomatal and mesophyll diffusional constrains, depending on the severity of the treatment and exposure time. Conditions of waterlogging and hypoxia revealed a slight growth plasticity of the species in response to prolonged stress conditions, followed by a fast recovery upon reoxygenation. Moreover, the rapid restoration of physiological functions after O2 deprivation testifies to the environmental plasticity of this species, although prolonged O2 shortage proved detrimental to A. donax by hampering growth and photosynthetic CO2 uptake.

14.
Plant Cell Physiol ; 59(6): 1248-1254, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860377

RESUMEN

Environmental cues modulate the balance of carbon (C) and nitrogen (N) which are essential elements for plant metabolism and growth. In Arabidopsis, photochemical efficiency of PSII, phosphorylation status and localization of many enzymes, and the level of total soluble sugars were affected by an unbalanced C/N ratio. Since differences in C/N affect these parameters, here we checked whether different sources of N have different effects when a high C/N ratio is imposed. NO3- and NH4+ were separately provided in C/N medium. We investigated the effects on photochemical efficiency of PSII, the level of total soluble sugars and nitrate reductase activity under stressful C/N conditions compared with control conditions. We found that treated plants accumulated more total soluble sugars when compared with control. Photochemical efficiency of PSII did not show significant differences between the two sources of nitrogen after 24 h. The actual nitrate reductase activity was the result of a combination of activity, activation state and protein level. This activity constantly decreased starting from time zero in control conditions; in contrast, the actual nitrate reductase activity showed a peak at 2 h after treatment with NO3-, and at 30 min with NH4+. This, according to the level of total soluble sugars, can be explained by the existence of a cross-talk between the sugars in excess and low nitrate in the medium that blocks the activity of nitrate reductase in stressful sugar conditions until the plant is adapted to the stress.


Asunto(s)
Arabidopsis/enzimología , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Compuestos de Amonio/metabolismo , Arabidopsis/genética , Nitrato-Reductasa/genética , Nitratos/metabolismo , Fosforilación
15.
Plant Physiol Biochem ; 128: 24-31, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29751252

RESUMEN

Water deficit triggers a dynamic and integrated cross-talk between leaves and roots. Tolerant plants have developed several physiological and molecular mechanisms to establish new cell metabolism homeostasis, avoiding and/or escaping from permanent impairments triggered by drought. Two tomato genotypes (a Southern Italy landrace called Ciettaicale and the well-known commercial cultivar Moneymaker) were investigated at vegetative stage to assess leaf and root metabolic strategies under 20 days of water deficit. Physiological and metabolic changes, in terms of ABA, IAA, proline, soluble sugars and phenols contents, occurred in both tomato genotypes under water stress. Overall, our results pointed out the higher plasticity of Ciettaicale to manage plant water status under drought in order to preserve the source-sink relationships. This aim was achieved by maintaining a more efficient leaf photosystem II (PSII) photochemistry, as suggested by chlorophyll fluorescence parameters, associated with a major investment towards root growth and activity to improve water uptake. On the contrary, the higher accumulation of carbon compounds, resulting from reduced PSII photochemistry and enhanced starch reserve mobilization, in leaves and roots of Moneymaker under drought could play a key role in the osmotic adjustment, although causing a feedback disruption of the source-sink relations. This hypothesis was also supported by the different drought-induced redox unbalance, as suggested by H2O2 and MDA contents. This could affect both PSII photochemistry and root activity, leading to a major involvement of NPQ and antioxidant system in response to drought in Moneymaker than Ciettaicale.


Asunto(s)
Genotipo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Deshidratación/genética , Deshidratación/metabolismo , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/genética , Malondialdehído/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Raíces de Plantas/genética
16.
Sci Rep ; 8(1): 371, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321610

RESUMEN

Increased ultraviolet B (UVB) radiation due to global change can affect plant growth and metabolism. Here, we evaluated the capacity of quinoa to resist under short acute UVB irradiation. Quinoa was daily exposed for 30 or 60 min to 1.69 W m-2 UVB. The results showed that 30 min exposure in 9 d-course did not cause severe alterations on photosynthetic pigments and flavonoids, but a significant increase of antioxidant capacity was observed. Otherwise, 60 min UVB in 5 d-course reduced almost all these parameters except for an increase in the de-epoxidation of xanthophyll cycle pigments and led to the death of the plants. Further studies of gas exchange and fluorescence measurements showed that 30 min UVB dramatically decrease stomatal conductance, probably associated to reactive oxygen species (ROS) production. Inhibition of photosynthetic electron transport was also observed, which could be a response to reduce ROS. Otherwise, irreversible damage to the photosynthetic apparatus was found with 60 min UVB probably due to severe ROS overproduction that decompensates the redox balance inducing UVB non-specific signaling. Moreover, 60 min UVB compromised Rubisco carboxylase activity and photosynthetic electron transport. Overall, these data suggest that quinoa modulates different response mechanisms depending on the UVB irradiation dosage.


Asunto(s)
Chenopodium quinoa/fisiología , Chenopodium quinoa/efectos de la radiación , Rayos Ultravioleta , Antioxidantes/metabolismo , Clorofila/metabolismo , Flavonoides/metabolismo , Oxidación-Reducción , Fotosíntesis/efectos de la radiación , Pigmentos Biológicos/biosíntesis
17.
Plant Direct ; 2(10): e00089, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31245689

RESUMEN

Investigation of cultivated plant physiology grown under low energy input plays an important role to indicate their fitness to the new environmental conditions. The durum-wheat cultivars Creso and Dylan were tested to evaluate the growth, production, and proteomic and transcriptomic profiles of the crop under different synthetic and organic nitrogen fertilization regimes. In this work, a two-dimensional gel electrophoresis (2-DE) approach combined with liquid chromatography-mass spectrometry (LC-MS) was used to investigate the protein changes induced by the use of different nitrogen sources (hydrolysate of proteins 1 and 2, rhizovit, synthesis, leather) on wheat plants. Proteomic studies were integrated with qPCR analysis of genes related to glutamine synthetase/glutamine-2-oxoglutarate aminotransferase (GS-GOGAT) and tricarboxylic acid (TCA) metabolic pathways because most relevant for nitrogen-dependent plants growth. The proteomic analysis lead to the isolation of 23 spots that were able to distinguish the analyzed samples. These spots yielded the identification of 60 proteins involved in photosynthesis, glycolysis, and nitrogen metabolism. As an example, the quinone oxidoreductase-like protein and probable glutathione S-transferase GSTU proteins were identified in two spots that represents the most statistically significant ones in Dylan samples. Transcript analysis indicated that related genes exhibited different expression trends; the heat map also revealed the different behaviors of the hydrolysates of the proteins 1 and 2 nitrogen sources. The effects of nitrogenous fertilizers at the proteomic and agronomic levels revealed that plants fertilized with synthesis or rhizovit gave the best results concerning yield, whereas rhizovit and protein hydrolysates were most effective for proteins content in the grain (% of dry weight). Therefore, all parameters measured in this study indicated that different kinds of nitrogen fertilization used have a relevant impact on plant growth and production.

18.
Physiol Plant ; 161(3): 385-399, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28767128

RESUMEN

Low oxygen conditions occur in grass sites due to high and frequent precipitation, poor soil quality, and over-irrigation followed by slow drainage. Three warm-season and one cool-season grass were analyzed at metabolic level during a time-course experiment performed in a controlled anoxic environment. Prolonged oxygen depletion proved detrimental by leading to premature death to all the species, with the exception of seashore paspalum. Moreover, the anoxia tolerance observed in these grasses has been associated with slow use of carbohydrates, rather than with their relative abundance, which was more important than their antioxidant capacity. Further physiological characterization of eight seashore paspalum genotypes to anoxia was also performed, by examining the variation in photosystem II (PSII) efficiency and gas exchange during post-anoxia recovery. Multivariate analysis highlighted the presence of three main clusters of seashore paspalum genotypes, characterized by different ability to restore the PSII photochemistry during recovery after one day of anoxia. Taken together, our data demonstrate that the analysis of post-anoxia recovery of fluorescence and gas exchange parameters can represent a fast and reliable indicator for selecting species and cultivars more able to acclimate their photosynthetic apparatus.


Asunto(s)
Oxígeno/metabolismo , Fotosíntesis , Poaceae/fisiología , Carácter Cuantitativo Heredable , Adaptación Fisiológica/efectos de la radiación , Alcohol Deshidrogenasa/metabolismo , Anaerobiosis/efectos de la radiación , Análisis Factorial , Genotipo , Luz , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Poaceae/enzimología , Poaceae/genética , Poaceae/efectos de la radiación , Estaciones del Año , Solubilidad , Especificidad de la Especie , Azúcares/metabolismo
19.
PLoS One ; 11(11): e0166131, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832166

RESUMEN

In germinating seeds under unfavorable environmental conditions, the mobilization of stores in the cotyledons is delayed, which may result in a different modulation of carbohydrates balance and a decrease in seedling vigor. Tall fescue (Festuca arundinacea Schreb.) caryopses grown at 4°C in the dark for an extended period in complete absence of nutrients, showed an unexpected ability to survive. Seedlings grown at 4°C for 210 days were morphologically identical to seedlings grown at 23°C for 21 days. After 400 days, seedlings grown at 4°C were able to differentiate plastids to chloroplast in just few days once transferred to the light and 23°C. Tall fescue exposed to prolonged period at 4°C showed marked anatomical changes: cell wall thickening, undifferentiated plastids, more root hairs and less xylem lignification. Physiological modifications were also observed, in particular related to sugar content, GA and ABA levels and amylolytic enzymes pattern. The phytohormones profiles exhibited at 4 and 23°C were comparable when normalized to the respective physiological states. Both the onset and the completion of germination were linked to GA and ABA levels, as well as to the ratio between these two hormones. All plants showed a sharp decline in carbohydrate content, with a consequent onset of gradual sugar starvation. This explained the slowed then full arrest in growth under both treatment regimes. The analysis of amylolytic activity showed that Ca2+ played a central role in the stabilization of several isoforms. Overall, convergence of starvation and hormone signals meet in crosstalk to regulate germination, growth and development in tall fescue.


Asunto(s)
Adaptación Fisiológica/fisiología , Festuca/fisiología , Plantones/fisiología , Estrés Fisiológico/fisiología , Ácido Abscísico/metabolismo , Adaptación Fisiológica/efectos de la radiación , Calcio/metabolismo , Carbohidratos/análisis , Pared Celular/metabolismo , Pared Celular/fisiología , Frío , Cotiledón/metabolismo , Cotiledón/fisiología , Oscuridad , Festuca/metabolismo , Giberelinas/metabolismo , Luz , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Factores de Tiempo , alfa-Amilasas/metabolismo
20.
Sci Rep ; 6: 34619, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708424

RESUMEN

In this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC's profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins). Statistical analyses was carried out both on the signals obtained by MS and on the protein profiles. The difference between the VOC profile of two cultivars or two preparations of the same sample - matrices, in this case kernel vs wholemeal flour - can be very subtle; the high resolution of PTR-TOF-MS - down to levels as low as pptv - made it possible to recognize these differences. The effects of grinding on the VOC profiles were analyzed using SIMPER and Tanglegram statistical methods. Our results show that it is possible describe samples using VOC profiles and protein data.


Asunto(s)
Harina/análisis , Gliadina/aislamiento & purificación , Glútenes/aislamiento & purificación , Semillas/química , Triticum/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Evolución Biológica , Italia , Fitomejoramiento , Análisis de Componente Principal , Semillas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triticum/clasificación , Triticum/genética , Triticum/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...