Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860210

RESUMEN

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Asunto(s)
Microbioma Gastrointestinal , Larva , ARN Ribosómico 16S , Spodoptera , Animales , Microbioma Gastrointestinal/genética , Spodoptera/microbiología , Spodoptera/genética , Larva/microbiología , ARN Ribosómico 16S/genética , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Enterococcus/genética , Bacteroides/genética , Simbiosis
2.
Pest Manag Sci ; 80(7): 3491-3503, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38426637

RESUMEN

BACKGROUND: Fall armyworm, Spodoptera frugiperda, a formidable agricultural pest, has developed resistance to various synthetic insecticides. However, how S. frugiperda utilizes its limited energy and resources to deal with various insecticides remains largely unexplored. RESULTS: We utilized transcriptome sequencing to decipher the broad-spectrum adaptation mechanism of S. frugiperda to eight insecticides with distinct modes-of-action. Analysis of the Venn diagram revealed that 1014 upregulated genes and 778 downregulated genes were present in S. frugiperda treated with at least five different insecticides, compared to the control group. Exposure to various insecticides led to the significant upregulation of eight cytochrome P450 monooxygenases (P450s), four UDP glucosyltransferases (UGTs), two glutathione-S-transferases (GSTs) and two ATP-binding cassette transporters (ABCs). Among them, the sfCYP340AD3 and sfCYP4G74 genes were demonstrated to respond to stress from six different insecticides in S. frugiperda, as evidenced by RNA interference and toxicity bioassays. Furthermore, homology modeling and molecular docking analyses showed that sfCYP340AD3 and sfCYP4G74 possess strong binding affinities to a variety of insecticides. CONCLUSION: Collectively, these findings showed that S. frugiperda utilizes a battery of core detoxification genes to cope with the exposure of synthetic insecticides. This study also sheds light on the identification of efficient insecticidal targets gene and the development of resistance management strategies in S. frugiperda, thereby facilitating the sustainable control of this serious pest. © 2024 Society of Chemical Industry.


Asunto(s)
Inactivación Metabólica , Resistencia a los Insecticidas , Insecticidas , Spodoptera , Spodoptera/efectos de los fármacos , Spodoptera/genética , Spodoptera/metabolismo , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Simulación del Acoplamiento Molecular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Transcriptoma , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo
3.
J Agric Food Chem ; 71(38): 14092-14107, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37699662

RESUMEN

Chlorantraniliprole has been widely used to controlSpodoptera frugiperda, but it has led to the development of chlorantraniliprole resistance. Multiomics analysis of strains with two extreme traits helps to elucidate the complex mechanisms involved. Herein, following genome resequencing and application of the Euclidean distance algorithm, 550 genes within a 16.20-Mb-linked region were identified from chlorantraniliprole-resistant (Ch-R) and chlorantraniliprole-susceptible (Ch-Sus) strains. Using transcriptome sequencing, 2066 differentially expressed genes were identified between Ch-R and Ch-Sus strains. Through association analysis, three glutathione S-transferase family genes and four trehalose transporter genes were selected for functional verification. Notably, SfGSTD1 had the strongest binding ability with chlorantraniliprole and is responsible for chlorantraniliprole tolerance. The Ch-R strain also increased the intracellular trehalose content by upregulating the transcription of SfTret1, thereby contributing to chlorantraniliprole resistance. These findings provide a new perspective to reveal the mechanism of resistance of agricultural pests to insecticides.


Asunto(s)
Insecticidas , Trehalosa , Animales , Spodoptera , Resistencia a los Insecticidas/genética , ortoaminobenzoatos/farmacología , Insecticidas/farmacología , Larva
4.
Insects ; 14(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37504650

RESUMEN

Frankliniella occidentalis is a highly destructive and invasive agricultural pest that has developed resistance to a variety of insecticide classes. Different planting structures and insecticide use frequency can directly affect the resistance development of F. occidentalis. In this study, the susceptibility of three field strains of F. occidentalis, collected over one year (April to November) from three habitat conditions (facility agriculture area, FA; open field crop area, OF; agroforestry intersection area, AI), to spinetoram, spinosad, emamectin benzoate, chlorfenapyr, acetamiprid, and imidacloprid were monitored and compared. At the same time, the detoxification enzyme activity of F. occidentalis in different habitats was determined. The results showed that the susceptibility of the F. occidentalis population in FA was significantly lower than that of populations from OF and AI. Among them, the F. occidentalis population in FA had developed low levels of resistance to spinetoram (RR = 9.18-fold), emamectin benzoate (RR = 5.47-fold), chlorfenapyr (RR = 6.67-fold), and acetamiprid (RR = 7.49-fold), and had developed moderate level resistance to imidacloprid (RR = 11.67-fold), while still being relatively sensitive to spinosad. The population of F. occidentalis from OF had developed low level resistance to spinetoram (RR = 5.24-fold) but was still relatively sensitive to the other five insecticides. The resistance of F. occidentalis from AI to six insecticides was at relatively sensitive levels. The results of the enzyme activities of detoxification enzymes, including carboxylesterase (CarE), glutathione S-transferase (GST), acetylcholinesterase (AChE), and the cytochrome P450 enzyme system (CYP450), revealed that the activities of the FA population of F. occidentalis were significantly higher than those of the other two populations. The change of CarE activity in F. occidentalis was consistent with that of spinetoram resistance, indicating that CarE may be involved in the metabolic resistance of F. occidentalis to spinetoram. Among the three populations, the resistance and detoxification enzyme activities of F. occidentalis of the FA population to six insecticides were higher than those of the other two populations. Our findings, along with other strategies, are expected to help with the resistance management of F. occidentalis in different habitats.

5.
Front Microbiol ; 14: 1131797, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333653

RESUMEN

Beneficial microorganisms play a pivotal role in the invasion process of exotic plants, including arbuscular mycorrhizal fungi (AMF) and Bacillus. However, limited research exists on the synergistic influence of AMF and Bacillus on the competition between both invasive and native plants. In this study, pot cultures of Ageratina adenophora monoculture, Rabdosia amethystoides monoculture, and A. adenophora and R. amethystoides mixture were used to investigate the effects of dominant AMF (Septoglomus constrictum, SC) and Bacillus cereus (BC), and the co-inoculation of BC and SC on the competitive growth of A. adenophora. The results showed that inoculation with BC, SC, and BC + SC significantly increased the biomass of A. adenophora by 14.77, 112.07, and 197.74%, respectively, in the competitive growth between A. adenophora and R. amethystoides. Additionally, inoculation with BC increased the biomass of R. amethystoides by 185.07%, while inoculation with SC or BC + SC decreased R. amethystoides biomass by 37.31 and 59.70% compared to the uninoculated treatment. Inoculation with BC significantly increased the nutrient contents in the rhizosphere soil of both plants and promoted their growth. Inoculation with SC or SC + BC notably increased the nitrogen and phosphorus contents of A. adenophora, therefore enhancing its competitiveness. Compared with single inoculation, dual inoculation with SC and BC increased AMF colonization rate and Bacillus density, indicating that SC and BC can form a synergistic effect to further enhance the growth and competitiveness of A. adenophora. This study reveals the distinct role of S. constrictum and B. cereus during the invasion of A. adenophora, and provide new clues to the underlying mechanisms of interaction between invasive plant, AMF and Bacillus.

6.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175710

RESUMEN

Despite the huge human and economic costs of invasive insects, which are the main group of invasive species, their environmental impacts through various mechanisms remain inadequately explained in databases and much of the invasion biology literature. High-throughput sequencing technology, especially whole-genome sequencing, has been used as a powerful method to study the mechanisms through which insects achieve invasion. In this study, we reviewed whole-genome sequencing-based advances in revealing several important invasion mechanisms of invasive insects, including (1) the rapid genetic variation and evolution of invasive populations, (2) invasion history and dispersal paths, (3) rapid adaptation to different host plant ranges, (4) strong environmental adaptation, (5) the development of insecticide resistance, and (6) the synergistic damage caused by invasive insects and endosymbiotic bacteria. We also discussed prevention and control technologies based on whole-genome sequencing and their prospects.


Asunto(s)
Genómica , Insectos , Animales , Humanos , Insectos/genética , Adaptación Fisiológica/genética , Aclimatación , Ambiente
7.
Foods ; 12(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37107517

RESUMEN

The larvae of Clanis bilineata tsingtauica, a special species of Chinese edible insect, are of great nutritional, medicinal and economic value to humans. This study aimed to clarify the effect of different soybean varieties (Guandou-3 (G3), Ruidou-1 (R1), September cold (SC)) on the nutritional quality and feeding selection behavior of C. bilineata tsingtauica larvae. The results showed that soybean isoleucine (Ile) and phenylalanine (Phe) were positively correlated with larval host selection (HS) and protein content. The order of soybean plants selected by C. bilineata tsingtauica larvae was R1 > SC > G3, and they selected R1 significantly higher than SC and G3 by 50.55% and 109.01%, respectively. The protein content of the larvae fed on R1 was also the highest among the three cultivars. In addition, a total of 17 volatiles belonging to 5 classes were detected from soybeans: aldehydes, esters, alcohols, ketones, and heterocyclic compounds. Pearson's analysis showed that soybean methyl salicylate was positively correlated with larval HS and their protein content, and soybean 3-octenol was negatively correlated with larval HS and their palmitic acid content. In conclusion, C. bilineata tsingtauica larvae are more adapted to R1 than to the other two soybean species. This study provides a theoretical basis for the production of more protein-rich C. bilineata tsingtauica in the food industry.

8.
Front Plant Sci ; 14: 1074184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844064

RESUMEN

Plant-derived natural products are important resources for pesticide discovery. Acetylcholinesterase (AChE) is a well-validated pesticide target, and inhibiting AChE proves fatal for insects. Recent studies have shown that the potential of various sesquiterpenoids as AChE inhibitors. However, few studies have been conducted with eudesmane-type sesquiterpenes with AChE inhibitory effects. Therefore, in this research, we isolated two new sesquiterpenes, laggeranines A (1) and B (2), along with six known eudesmane-type sesquiterpenes (3-8) from Laggera pterodonta, and characterized their structures and the inhibitory effect they exerted on AChE. The results showed that these compounds had certain inhibitory effects on AChE in a dose-dependent manner, of which compound 5 had the best inhibitory effect with IC50 of 437.33 ± 8.33 mM. As revealed by the Lineweaver-Burk and Dixon plots, compound 5 was observed to suppress AChE activity reversibly and competitively. Furthermore, all compounds exhibited certain toxicity levels on C. elegans. Meanwhile, these compounds had good ADMET properties. These results are significant for the discovery of new AChE targeting compounds, and also enrich the bioactivity activity repertoire of L. pterodonta.

9.
Front Physiol ; 14: 1093713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846329

RESUMEN

Good exploitation and utilization of edible insects can effectively alleviate global food security crisis in years. The study on diapause larvae of Clanis bilineata tsingtauica (DLC) was conducted to explore how gut microbiota regulate the nutrients synthesis and metabolism of edible insects. The results showed that C. bilineata tsingtauica maintained a total and stable nutrition levels at early phase of diapause. The activity of instetinal enzymes in DLC fluctuated markedly with diapause time. Additionally, Proteobacteria and Firmicutes were the predominant taxa, and TM7 (Saccharibacteria) was the marker species of gut microbiota in DLC. Combined the gene function prediction analysis with Pearson correlation analysis, TM7 in DLC was mainly involved in the biosynthesis of diapause-induced differential fatty acids, i.e., linolelaidic acid (LA) and tricosanoic acid (TA), which was probably regulated by changing the activity of protease and trehalase, respectively. Moreover, according to the non-target metabolomics, TM7 might regulate the significant differential metabolites, i.e., D-glutamine, N-acetyl-d-glucosamine and trehalose, via the metabolism of amino acid and carbohydrate pathways. These results suggest that TM7 increased LA and decreased TA via the intestinal enzymes, and altered intestinal metabolites via the metabolism pathways, maybe a key mechanism for regulating the nutrients synthesis and metabolisms in DLC.

10.
Metabolites ; 14(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38248818

RESUMEN

Azadirachtin is regarded as one of the best botanical pesticides due to its broad spectrum of insecticides and low interference with natural enemies. To enhance the effect of azadirachtin and slow down the generation of resistance, the combined activity was studied. Here, we found that Dodonaea viscosa saponin B (DVSB) isolated from the seeds of Dodonaea viscosa has good combined activity with the azadirachtin. The mixture of DVSB and azadirachtin in a volume ratio of 1:4 had the strongest combined effect against Spodoptera litura, with a co-toxicity coefficient (CTC) of 212.87. DVSB exerted its combined activity by affecting the contact angle, surface tension, maximum retention and cell membrane permeability. When mixed with DVSB, the contact angle and surface tension decreased by 30.38% and 23.68%, and the maximum retention increased by 77.15%. DVSB was screened as an effective combined activity botanical compound of azadirachtin upon the control of S. litura and highlights the potential application of botanical compounds as pesticide adjuvants in the pest management.

11.
Insects ; 13(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36354853

RESUMEN

Elevated atmospheric carbon dioxide concentrations (eCO2) can affect both herbivorous insects and their host plants. The fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous agricultural pest that may attack more than 350 host plant species and has developed resistance to both conventional and novel-action insecticides. However, the effects of eCO2 on host adaptability and insecticide resistance of FAW are unclear. We hypothesized that eCO2 might affect insecticide resistance of FAW by affecting its host plants. To test this hypothesis, we investigated the effect of eCO2 on (1) FAW's susceptibility to chlorantraniliprole after feeding on wheat, (2) FAW's population performance traits (including the growth and reproduction), and (3) changes in gene expression in the FAW by transcriptome sequencing. The toxicity of chlorantraniliprole against the FAW under eCO2 (800 µL/L) stress showed that the LC50 values were 2.40, 2.06, and 1.46 times the values at the ambient CO2 concentration (400 µL/L, aCO2) for the three generations, respectively. Under eCO2, the life span of pupae and adults and the total number of generations were significantly shorter than the FAW under aCO2. Compared to the aCO2 treatment, the weights of the 3rd and 4th instar larvae and pupae of FAW under eCO2 were significantly heavier. Transcriptome sequencing results showed that more than 79 detoxification enzyme genes in FAW were upregulated under eCO2 treatment, including 40 P450, 5 CarE, 17 ABC, and 7 UGT genes. Our results showed that eCO2 increased the population performance of FAW on wheat and reduced its susceptibility to chlorantraniliprole by inducing the expression of detoxification enzyme genes. This study has important implications for assessing the damage of FAW in the future under the environment of increasing atmospheric CO2 concentration.

12.
Front Plant Sci ; 13: 1015947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325539

RESUMEN

The invasive weed Ageratina adenophora can form a positive symbiotic relationship with native arbuscular mycorrhizal fungi (AMF) to promote its invasion ability. However, the function of AMF during the feeding of Aphis gossypii in A. adenophora was poorly understand. This study aimed to investigate the effects of two dominant AMF (Claroideoglomus etunicatum and Septoglomus constrictum) on A. adenophora in response to the feeding of the generalist herbivore A. gossypii. The results showed that A. gossypii infestation could significantly reduce the biomass, nutrient and proline contents of A. adenophora, and increase the antioxidant enzyme activities, defense hormone and secondary metabolite contents of the weed. Compared with the A. gossypii infested A. adenophora, inoculation C. etunicatum and S. constrictum could significantly promote the growth ability and enhanced the resistance of A. adenophora to A. gossypii infestation, and the aboveground biomass of A. adenophora increased by 317.21% and 114.73%, the root biomass increased by 347.33% and 120.58%, the polyphenol oxidase activity heightened by 57.85% and 12.62%, the jasmonic acid content raised by 13.49% and 4.92%, the flavonoid content increased by 27.29% and 11.92%, respectively. The survival rate of A. gossypii and density of nymphs were significantly inhibited by AMF inoculation, and the effect of C. etunicatum was significantly greater than that of S. constrictum. This study provides clarified evidence that AMF in the rhizosphere of A. adenophora are effective in the development of tolerance and chemical defense under the feeding pressure of insect herbivory, and offer references for the management of the A. adenophora from the perspective of soil microorganisms.

13.
Front Plant Sci ; 13: 882255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774817

RESUMEN

The rhizospheric microbial community affects the population establishment of invasive plants in introduced areas, among which Bacillus has numerous functions in promoting plant growth. This study isolated and enriched the Bacillus community in the rhizospheric soil of the invasive plant Ageratina adenophora and the native accompanying plant Rabdosia amethystoides. The effects of these rhizospheric Bacillus communities on the growth and competition of A. adenophora and R. amethystoides were evaluated in pot experiments. The results showed that the number and diversity of Bacillus in the rhizospheric soil of A. adenophora were higher than those of R. amethystoides (A. adenophora: 122 strains in soil, 16 Bacillus taxa; R. amethystoides: 88 strains in soil, 9 Bacillus taxa). After Bacillus inoculation of A. adenophora in a pot experiment, Bacillus idriensis, Bacillus toyonensis and Bacillus cereus were accumulated in the rhizospheric of A. adenophora, which significantly increased the nitrate nitrogen (NO3 --N) content in the soil and the total carbon and nitrogen concentrations in A. adenophora in the mixed treatment. The selective accumulation of Bacillus enhanced the competitive advantage of A. adenophora over the native accompanying plant; the corrected index of relative competition intensity of A. adenophora-inoculated Bacillus reached double that of the uninoculated treatment, and the growth of native plants was greatly suppressed under mixed planting. Our study confirmed that invasion of A. adenophora can lead to the accumulation of specific Bacillus taxa in the rhizospheric soil, which in turn can increase the competitive advantage of A. adenophora.

14.
Insects ; 13(4)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35447815

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda, is one of the most important invasive species and causes great damage to various host crops in China. In this study, the diversity and function of gut bacteria in the 5th instar larvae of FAW fed on maize, wheat, potato and tobacco leaves were analyzed through 16S rRNA sequencing. A total of 1324.25 ± 199.73, 1313.5 ± 74.87, 1873.00 ± 190.66 and 1435.25 ± 139.87 operational taxonomic units (OTUs) from the gut of FAW fed on these four different host plants were detected, respectively. Firmicutes, Proteobacteria and Bacteroidetes were the most abundant bacterial phyla. Beta diversity analysis showed that the gut bacterial community structure of larvae fed on different host plants was significantly differentiated. At the genus level, the abundance of Enterococcus in larvae fed on wheat was significantly lower than those fed on the other three host plants. Enterobacter and ZOR0006 were dominant in FAW fed on tobacco leaves, and in low abundance in larvae fed on wheat. Interestingly, when fed on Solanaceae (tobacco and potato) leaves which contained relative higher levels of toxic secondary metabolites than Gramineae (wheat and maize), the genera Enterococcus, Enterobacter and Acinetobacter were significantly enriched. The results indicated that gut bacteria were related to the detoxification and adaptation of toxic secondary metabolites of host plants in FAW. Further analysis showed that replication, repair and nucleotide metabolism functions were enriched in the gut bacteria of larvae fed on tobacco and potato. In conclusion, the gut bacterial diversity and community composition in FAW larvae fed on different host plants showed significant differences, and the insect is likely to regulate their gut bacteria for adaptation to different host plants.

15.
Pest Manag Sci ; 78(1): 274-286, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480397

RESUMEN

BACKGROUND: Elevated CO2 can directly affect the toxicity of insecticides to insects and the physiological response of insects to insecticides. Frankliniella occidentalis and F. intonsa are highly destructive pests that target horticultural crops. Spinetoram is an effective pesticide against thrips. This study sought to explore the effect of elevated CO2 on efficacy of spinetoram against F. occidentalis and F. intonsa and effect of the spinetoram on activities of protective and detoxifying enzymes under elevated CO2 . Notably, these enzymes can be exploited in further studies to develop interventions for thrips resistance management. RESULTS: Toxicity bioassay showed that the LC50 values of F. occidentalis and F. intonsa exposed to spinetoram at elevated CO2 (800 µL L-1 concentration) for 48 h was 0.08 and 0.006 mg L-1 , respectively, which is 0.62 and 0.75 times of the values at ambient CO2 (400 µL L-1 concentration). The findings showed that elevated CO2 decreased activities of the superoxide dismutase and acetylcholinesterase in thrips, while increasing the activities of carboxylesterase and glutathione S-transferase. However, spinetoram increased activities of protective and detoxifying enzymes in both thrips under the two CO2 levels. Elevated CO2 and spinetoram affect the physiological enzyme activity in thrips synergistically, and the activities of analyzed enzymes were generally higher in F. occidentalis than in F. intonsa. CONCLUSION: Elevated CO2 amplifies the efficacy of spinetoram on thrips, F. intonsa is more susceptibility to spinetoram than F. occidentalis and the latter showed better adaptation to adverse conditions than the former. © 2021 Society of Chemical Industry.


Asunto(s)
Dióxido de Carbono/farmacología , Macrólidos/farmacología , Thysanoptera , Acetilcolinesterasa , Animales , Thysanoptera/efectos de los fármacos , Thysanoptera/enzimología
16.
Protein Cell ; 13(7): 513-531, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33108584

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.


Asunto(s)
Plaguicidas , Transcriptoma , Animales , China , Genómica , Humanos , Masculino , Spodoptera/genética
17.
Insects ; 12(11)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34821798

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.

18.
Environ Pollut ; 285: 117409, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049133

RESUMEN

Insecticide resistance is one of the major obstacles for controlling agricultural pests. There have been a lot of studies on insecticides stimulating the development of insect resistance. Herbicides account for the largest sector in the agrochemical market and are often co-applied with insecticides to control insect pests and weeds in the same cropland ecosystem. However, whether and how herbicides exposure will affect insecticide resistance in insect pests is largely unexplored. Here we reported that after exposure to herbicide butachlor, the lepidopteran Spodoptera litura larvae reduced susceptibility to the insecticide chlorpyrifos. Docking simulation studies suggested that general odorant-binding protein 2 (GOBP2) could bind to butachlor with high binding affinity, and silencing SlGOBP2 by RNA interference (RNAi) decreased larval tolerance to chlorpyrifos. Butachlor exposure induced ecdysone biosynthesis, whose function on increasing chlorpyrifos tolerance was supported in synergism experiments and confirmed by silencing the key gene (SlCYP307A1) for ecdysone synthesis. Butachlor exposure also activated the expression of detoxification enzyme genes. Silencing the genes with the highest herbicide-induced expression among the three detoxification enzyme genes led to increased larval susceptibility to chlorpyrifos. Collectively, we proposed a new mechanism that olfactory recognition of herbicides by GOBP2 triggers insect hormone biosynthesis and leads to high metabolic tolerance against insecticides. These findings provide valuable information for the dissection of mechanisms of herbicide-induced resistance to insecticides and also supplements the development of reduced-risk strategies for pest control.


Asunto(s)
Cloropirifos , Herbicidas , Insecticidas , Percepción Olfatoria , Acetanilidas , Animales , Cloropirifos/toxicidad , Ecdisona , Ecosistema , Herbicidas/toxicidad , Insecticidas/toxicidad , Larva , Receptores Odorantes , Spodoptera/genética
19.
Pest Manag Sci ; 74(12): 2773-2782, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29737621

RESUMEN

BACKGROUND: Elevated CO2 can alter the leaf damage caused by insect herbivores. Frankliniella occidentalis (Pergande) is highly destructive invasive pest of crop production worldwide. To investigate how elevated CO2 affects F. occidentalis fed with Phaseolus vulgaris and, in particular, the interaction between plant defense and thrips anti-defense, nutrient content and antioxidant enzyme activity of P. vulgaris were measured, as well as the detoxifying enzyme activity of adult thrips. RESULTS: Elevated CO2 increased the soluble sugar, soluble protein and free amino acid content in non thrip-infested plants, and decreased superoxide dismutase (SOD) and peroxidase (POD) activity in these plants. Feeding thrips reduced the nutrient content in plants, and increased their SOD, catalase and POD activity. Variations in nutrient content and antioxidant enzyme activity in plants showed an opposite tendency over thrip feeding time. After feeding, acetylcholinesterase, carboxylesterase, and mixed-function oxidase activity in thrips increased to counter the plant defenses. Greater thrip densities induced stronger plant defenses and, in turn, detoxifying enzyme levels in thrips increased over thrip numbers. CONCLUSION: Our study revealed that F. occidentalis can induce not only an antioxidant-associated plant defense, but also detoxifying enzymes in thrips. Elevated CO2 might both enhance plant defense against thrip attack, and increase thrip anti-defense against plant defenses. © 2018 Society of Chemical Industry.


Asunto(s)
Dióxido de Carbono/farmacología , Especies Introducidas , Phaseolus/efectos de los fármacos , Thysanoptera/efectos de los fármacos , Thysanoptera/fisiología , Animales , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Phaseolus/enzimología , Phaseolus/metabolismo , Solubilidad
20.
Ying Yong Sheng Tai Xue Bao ; 25(10): 2833-9, 2014 Oct.
Artículo en Chino | MEDLINE | ID: mdl-25796889

RESUMEN

A field experiment was conducted to explore the root competitive effects of Ageratina adenophora and Setaria sphacelata, S. yunnanensis, Eupatorium fortunei, Chenopodium serotinum in monoculture and mixture, and the relative competitive abilities were evaluated. The results showed that the root length, superficial area and volume of A. adenophora in mixture were lower than in monoculture, but those of S. sphacelata were higher in mixture than in monoculture. The biomass of A. adenophora in mixture decreased by 77.1% and that of S. sphacelata increased by 80.4% compared with those in monoculture. The relative yield and competitive balance index of S. sphacelata were significantly higher than those of A. adenophora, and the relative yield was about 1.0, suggesting that the underground competitive ability of S. sphacelata was higher than A. adenophora. The root morphology of S. yunnanensis in monoculture and mixture was higher than those of A. adenophora, but the root morphology of two species in mixture was lower than in monoculture. The biomass of A. adenophora and S. yunnanensis in mixture decreased by 45.3% and 22.8% compared with those in monoculture, respectively. Competition effect parameters showed that A. adenophora was a mutual antagonism with S. yunnanensis. The root morphology of E. fortunei and A. adenophora in mixture showed no significant difference compared with that in monoculture. The biomass of A. adenophora and E. fortunei was lower than that in monoculture, respectively. Competition effect parameters showed that A. adenophora was a superior competitor. In the mixture of A. adenophora and C. serotinum, the root morphology parameters and competitive ability of A. adenophora were superior to those of C. serotinum. Above all, S. sphacelata is a preference plant material to control the A. adenophorum invasion and recover biodiversity in A. adenophorum invasion fields.


Asunto(s)
Ageratina/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Biodiversidad , Biomasa , Chenopodium , Eupatorium , Setaria (Planta)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...