Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38927837

RESUMEN

Tumor organoid cultures play a crucial role in clinical practice, particularly in guiding medication by accurately determining the morphology and size of the organoids. However, segmenting individual tumor organoids is challenging due to their inhomogeneous internal intensity and overlapping structures. This paper proposes a convexity-preserving level-set segmentation 4 model based on the characteristics of tumor organoid images to segment individual tumor organoids precisely. Considering the predominant spherical shape exhibited by organoid growth, we propose a level-set model that includes a data-driven term, a curvature term, and a regularization term. The data-driven term pulls the contour to the vicinity of the boundary; the curvature term ensures the maintenance of convexity in the targeted segmentation, and the regularization term controls the smoothness and propagation of the contour. The proposed model aids in overcoming interference from factors such as overlap and noise, enabling the evolving curve to converge to the actual boundary of the target accurately. Furthermore, we propose a selectable and targeted initialization method that guarantees precise segmentation of specific regions of interest. Experiments on 51 pancreatic ductal adenocarcinoma organoid images show that our model achieved excellent segmentation results. The average Dice value and computation time are 98.81±0.48% and 20.67 s. Compared with the C-V and CPLSE models, it is more accurate and takes less time.

2.
NPJ Breast Cancer ; 10(1): 22, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472210

RESUMEN

This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) for the preoperative evaluation of axillary lymph node (ALN) metastasis status in patients with a newly diagnosed unifocal breast cancer. A total of 883 eligible patients with breast cancer who underwent preoperative breast and axillary ultrasound were retrospectively enrolled between April 1, 2016, and June 30, 2022. The training cohort comprised 621 patients from Hospital I; the external validation cohorts comprised 112, 87, and 63 patients from Hospitals II, III, and IV, respectively. A DLR signature was created based on the deep learning and handcrafted features, and the DLRN was then developed based on the signature and four independent clinical parameters. The DLRN exhibited good performance, yielding areas under the receiver operating characteristic curve (AUC) of 0.914, 0.929, and 0.952 in the three external validation cohorts, respectively. Decision curve and calibration curve analyses demonstrated the favorable clinical value and calibration of the nomogram. In addition, the DLRN outperformed five experienced radiologists in all cohorts. This has the potential to guide appropriate management of the axilla in patients with breast cancer, including avoiding overtreatment.

3.
Sleep Breath ; 28(3): 1477-1489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316731

RESUMEN

OBJECTIVES: Existing evidence exhibits that obstructive sleep apnea (OSA) is a potential consequence of Parkinson's disease (PD) or a contributor to PD progression. This investigation aimed to detect potential critical genes and molecular mechanisms underlying interactions between PD and OSA through bioinformatics analyses. METHODS: The Gene Expression Omnibus (GEO) database was employed to obtain the expression profiles GSE20163 and GSE135917. The identification of common genes connected to PD and OSA was performed utilizing weighted gene co-expression network analysis and the R 4.0.4 program. The Cytoscape program was utilized to generate a network of protein-protein interactions (PPI), and the CytoHubba plugin was utilized to detect hub genes. Subsequently, functional enrichment analyses of the hub genes were conducted. Markers with increased diagnostic values for PD and OSA were confirmed using the GEO datasets GSE8397 and GSE38792. RESULTS: Typically, 57 genes that are common were identified in PD and OSA. Among these common genes, the top 10 hub genes in the PPI network were chosen. The verified datasets confirmed the presence of three important genes: CADPS, CHGA, and SCG3. Functional enrichment analysis revealed that these hub genes mostly participate in GABAergic synapses. CONCLUSION: Our findings suggest that CADPS, CHGA, and SCG3 are key genes involved in molecular mechanisms underlying interactions between OSA and PD. Functional enrichment of hub genes indicated a link between GABAergic synapses and the shared pathogenesis of PD and OSA. These candidate genes and corresponding pathways offer novel insights regarding biological targets that underlie the transcriptional connection between OSA and PD.


Asunto(s)
Biología Computacional , Enfermedad de Parkinson , Transducción de Señal , Apnea Obstructiva del Sueño , Humanos , Enfermedad de Parkinson/genética , Apnea Obstructiva del Sueño/genética , Transducción de Señal/genética , Mapas de Interacción de Proteínas/genética
4.
IEEE J Biomed Health Inform ; 28(2): 988-999, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064334

RESUMEN

The presence of tertiary lymphoid structures (TLSs) on pancreatic pathological images is an important prognostic indicator of pancreatic tumors. Therefore, TLSs detection on pancreatic pathological images plays a crucial role in diagnosis and treatment for patients with pancreatic tumors. However, fully supervised detection algorithms based on deep learning usually require a large number of manual annotations, which is time-consuming and labor-intensive. In this paper, we aim to detect the TLSs in a manner of few-shot learning by proposing a weakly supervised segmentation network. We firstly obtain the lymphocyte density maps by combining a pretrained model for nuclei segmentation and a domain adversarial network for lymphocyte nuclei recognition. Then, we establish a cross-scale attention guidance mechanism by jointly learning the coarse-scale features from the original histopathology images and fine-scale features from our designed lymphocyte density attention. A noise-sensitive constraint is introduced by an embedding signed distance function loss in the training procedure to reduce tiny prediction errors. Experimental results on two collected datasets demonstrate that our proposed method significantly outperforms the state-of-the-art segmentation-based algorithms in terms of TLSs detection accuracy. Additionally, we apply our method to study the congruent relationship between the density of TLSs and peripancreatic vascular invasion and obtain some clinically statistical results.


Asunto(s)
Neoplasias Pancreáticas , Estructuras Linfoides Terciarias , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Páncreas , Algoritmos , Núcleo Celular , Procesamiento de Imagen Asistido por Computador
5.
Phys Med Biol ; 68(21)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37586389

RESUMEN

Pancreatic duct dilation indicates a high risk of various pancreatic diseases. Segmentation for dilated pancreatic duct (DPD) on computed tomography (CT) image shows the potential to assist the early diagnosis, surgical planning and prognosis. Because of the DPD's tiny size, slender tubular structure and the surrounding distractions, most current researches on DPD segmentation achieve low accuracy and always have segmentation errors on the terminal DPD regions. To address these problems, we propose a cascaded terminal guidance network to efficiently improve the DPD segmentation performance. Firstly, a basic cascaded segmentation architecture is established to get the pancreas and coarse DPD segmentation, a DPD graph structure is build on the coarse DPD segmentation to locate the terminal DPD regions. Then, a terminal anatomy attention module is introduced for jointly learning the local intensity from the CT images, feature cues from the coarse DPD segmentation and global anatomy information from the designed pancreas anatomy-aware maps. Finally, a terminal distraction attention module which explicitly learns the distribution of the terminal distraction regions is proposed to reduce the false positive and false negative predictions. We also propose a new metric called tDice to measure the terminal segmentation accuracy for targets with tubular structures and two other metrics for segmentation error evaluation. We collect our dilated pancreatic duct segmentation dataset with 150 CT scans from patients with five types of pancreatic tumors. Experimental results on our dataset show that our proposed approach boosts DPD segmentation accuracy by nearly 20% compared with the existing results, and achieves more than 9% improvement for the terminal segmentation accuracy compared with the state-of-the-art methods.

6.
Med Phys ; 48(11): 7099-7111, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34469593

RESUMEN

PURPOSE: Fully automatic lumen segmentation in intravascular optical coherence tomography (OCT) images can assist physicians in quickly estimating the health status of vessels. However, OCT images are usually degraded by residual blood, catheter walls, guide wire artifacts, etc., which significantly reduce the quality of segmentation. To achieve accurate lumen segmentation in low-quality images, we propose a novel segmentation algorithm named SPACIAL: Shape Prior generation and geodesic Active Contour Interactive iterAting aLgorithm, which is guided by an adaptively generated shape prior. METHODS: In this framework, the active contour evolves under the guidance of shape prior, while the shape prior is automatically and adaptively generated based on the active contour. The active contour and the shape prior interactively iterate each other, which can generate the adaptive shape prior and consequently lead to accurate segmentation results. In addition, a fast algorithm is introduced to accelerate the segmentation in 3D images. RESULTS: The validity of the model is verified in 3240 images from 12 OCT pullbacks. The experimental results show satisfactory segmentation accuracy and time efficiency: the average Dice coefficient of SPACIAL is 93.6(2.4)%, and 5.7 times faster than that of the classical level set method. CONCLUSION: The proposed SPACIAL can quickly and efficiently perform accurate lumen segmentation on low quality OCT images, which is of great importance to cardiovascular disease diagnosis . The SPACIAL method shows great potential in clinical applications.


Asunto(s)
Algoritmos , Tomografía de Coherencia Óptica , Artefactos , Imagenología Tridimensional
7.
Phys Med Biol ; 65(22): 225034, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33045699

RESUMEN

Infection segmentation on chest CT plays an important role in the quantitative analysis of COVID-19. Developing automatic segmentation tools in a short period with limited labelled images has become an urgent need. Pseudo label-based semi-supervised method is a promising way to leverage unlabelled data to improve segmentation performance. Existing methods usually obtain pseudo labels by first training a network with limited labelled images and then inferring unlabelled images. However, these methods may generate obviously inaccurate labels and degrade the subsequent training process. To address these challenges, in this paper, an active contour regularized semi-supervised learning framework was proposed to automatically segment infections with few labelled images. The active contour regularization was realized by the region-scalable fitting (RSF) model which is embedded to the loss function of the network to regularize and refine the pseudo labels of the unlabelled images. We further designed a splitting method to separately optimize the RSF regularization term and the segmentation loss term with iterative convolution-thresholding method and stochastic gradient descent, respectively, which enable fast optimization of each term. Furthermore, we built a statistical atlas to show the infection spatial distribution. Extensive experiments on a small public dataset and a large scale dataset showed that the proposed method outperforms state-of-the-art methods with up to 5% in dice similarity coefficient and normalized surface dice, 10% in relative absolute volume difference and 8 mm in 95% Hausdorff distance. Moreover, we observed that the infections tend to occur at the dorsal subpleural lung and posterior basal segments that are not mentioned in current radiology reports and are meaningful to advance our understanding of COVID-19.


Asunto(s)
COVID-19/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático Supervisado , Tomografía Computarizada por Rayos X , Humanos , Pulmón/diagnóstico por imagen
8.
Med Phys ; 45(1): 223-235, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29131363

RESUMEN

PURPOSE: Segmentation of lesions in ultrasound images is widely used for preliminary diagnosis. In this paper, we develop an automatic segmentation algorithm for multiple types of lesions in ultrasound images. The proposed method is able to detect and segment lesions automatically as well as generate accurate segmentation results for lesion regions. METHODS: In the detection step, two saliency detection frameworks which adopt global image information are designed to capture the differences between normal and abnormal organs as well as these between lesions and the normal tissues around them. In the segmentation step, three types of local information, i.e., image intensity, improved local binary patterns (LBP) features, and an edge indicator, are embedded into a modified level set framework to carry out the segmentation task. RESULTS: The cyst and carcinoma regions in the ultrasound images of the human kidneys can be automatically detected and segmented by using the proposed method. The efficiency and accuracy of the method are validated by quantitative evaluations and comparative measurements with three well-recognized segmentation methods. Specifically, the average precision and dice coefficient of the proposed method in segmenting renal cysts are 95.33% and 90.16%, respectively, while those in segmenting renal carcinomas are 94.22% and 91.13%, respectively. The average precision and dice coefficient of the proposed method are higher than those of three compared segmentation methods. CONCLUSIONS: The proposed method can efficiently detect and segment the renal lesions in ultrasound images. In addition, since the proposed method utilizes the differences between normal and abnormal organs as well as these between lesions and the normal tissues around them, it can be possibly extended to deal with lesions in other organs of ultrasound images as well as lesions in medical images of other modalities.


Asunto(s)
Algoritmos , Enfermedades Renales/diagnóstico por imagen , Riñón/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas , Ultrasonografía , Carcinoma/diagnóstico por imagen , Quistes/diagnóstico por imagen , Humanos
9.
Phys Med ; 42: 162-173, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29173911

RESUMEN

Level set based methods are being increasingly used in image segmentation. In these methods, various shape constraints can be incorporated into the energy functionals to obtain the desired shapes of the contours represented by their zero level sets of functions. Motivated by the isoperimetric inequality in differential geometry, we propose a segmentation method in which the isoperimetric constrain is integrated into a level set framework to penalize the ratio of its squared perimeter to its enclosed area of an active contour. The new model can ensure the compactness of segmenting objects and complete missing or/and blurred parts of their boundaries simultaneously. The isoperimetric shape constraint is free of explicit expressions of shapes and scale-invariant. As a result, the proposed method can handle various objects with different scales and does not need to estimate parameters of shapes. Our method can segment lesions with blurred or/and partially missing boundaries in ultrasound, Computed Tomography (CT) and Magnetic Resonance (MR) images efficiently. Quantitative evaluation also confirms that the proposed method can provide more accurate segmentation than two well-known level set methods. Therefore, our proposed method shows potential of accurate segmentation of lesions for applying in diagnoses and surgical planning.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Angiomiolipoma/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Carcinoma/diagnóstico por imagen , Quistes/diagnóstico por imagen , Humanos , Riñón/diagnóstico por imagen , Enfermedades Renales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Enfermedades de las Parótidas/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas , Glándula Tiroides/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Ultrasonografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...