Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(3): e14682, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38499993

RESUMEN

BACKGROUND: Accumulating evidence supports the involvement of adaptive immunity in the development of radiation-induced brain injury (RIBI). Our previous work has emphasized the cytotoxic function of CD8+ T cells in RIBI. In this study, we aimed to investigate the presence and potential roles of cytotoxic CD4+ T cells (CD4+ CTLs) in RIBI to gain a more comprehensive understanding of adaptive immunity in this context. MAIN TEXT: Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed 3934 CD4+ T cells from the brain lesions of four RIBI patients and identified six subclusters within this population. A notable subset, the cytotoxic CD4+ T cells (CD4+ CTLs), was marked with high expression of cytotoxicity-related genes (NKG7, GZMH, GNLY, FGFBP2, and GZMB) and several chemokine and chemokine receptors (CCL5, CX3CR1, and CCL4L2). Through in-depth pseudotime analysis, which simulates the development of CD4+ T cells, we observed that the CD4+ CTLs exhibited signatures of terminal differentiation. Their functions were enriched in protein serine/threonine kinase activity, GTPase regulator activity, phosphoprotein phosphatase activity, and cysteine-type endopeptidase activity involved in the apoptotic signaling pathway. Correspondingly, mice subjected to gamma knife irradiation on the brain showed a time-dependent infiltration of CD4+ T cells, an increase of MHCII+ cells, and the existence of CD4+ CTLs in lesions, along with an elevation of apoptotic-related proteins. Finally, and most crucially, single-cell T-cell receptor sequencing (scTCR-seq) analysis at the patient level determined a large clonal expansion of CD4+ CTLs in lesion tissues of RIBI. Transcriptional factor-encoding genes TBX21, RORB, and EOMES showed positive correlations with the cytotoxic functions of CD4+ T cells, suggesting their potential to distinguish RIBI-related CD4+ CTLs from other subsets. CONCLUSION: The present study enriches the understanding of the transcriptional landscape of adaptive immune cells in RIBI patients. It provides the first description of a clonally expanded CD4+ CTL subset in RIBI lesions, which may illuminate new mechanisms in the development of RIBI and offer potential biomarkers or therapeutic targets for the disease.


Asunto(s)
Antineoplásicos , Lesiones Encefálicas , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Linfocitos T Citotóxicos , Encéfalo , Lesiones Encefálicas/metabolismo
2.
ACS Appl Mater Interfaces ; 15(12): 15203-15219, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36917732

RESUMEN

Radiation-induced brain injury (RIBI) is a severe, irreversible, or even life-threatening cerebral complication of radiotherapy in patients with head and neck tumors, and there is no satisfying prevention and effective treatment available for these patients. Amifostine (AMF) is a well-known free radical scavenger with demonstrated effectiveness in preventing radiation-induced toxicity. However, the limited permeability of AMF across the blood-brain barrier (BBB) when administered intravenously reduces the effectiveness of AMF in preventing RIBI. Herein, we construct a nanoparticle (NP) platform for BBB delivery of AMF. AMF is conjugated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-[poly(ethylene glycol)]-hydroxy succinamide [DSPE-PEG-NHS, PEG M 2000], and the product is DSPE-PEG-AMF. Then, the nanoparticles (DAPP NPs) were formed by self-assembly of poly(lactic-co-glycolic acid) (PLGA), DSPE-PEG-AMF, and polysorbate 80 (PS 80). PEG shields the nanoparticles from blood clearance by the reticuloendothelial system and lengthens the drug circulation time. PS 80 is used to encapsulate nanoparticles for medication delivery to the brain. The results of our study showed that DAPP NPs were able to effectively penetrate the blood-brain barrier (BBB) in healthy C57BL/6 mice. Furthermore, in a well-established mouse model of X-knife-induced brain injury, treatment with DAPP NPs (corresponding to 250 mg/kg AMF) was found to significantly reduce the volume of brain necrosis compared to mice treated with AMF (250 mg/kg). Importantly, the use of DAPP NPs was also shown to significantly mitigate the effects of radiation-induced neuronal damage and glial activation. This work presents a convenient brain-targeted AMF delivery system to achieve effective radioprotection for the brain, providing a promising strategy with tremendous clinical translation potential.


Asunto(s)
Amifostina , Lesiones Encefálicas , Nanopartículas , Ratones , Animales , Barrera Hematoencefálica , Amifostina/farmacología , Ratones Endogámicos C57BL , Encéfalo , Polietilenglicoles/farmacología , Polisorbatos , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA