Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
ISA Trans ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38845235

RESUMEN

Fault detection and diagnosis of nonstationary processes are crucial for ensuring the safety of industrial production systems. However, the nonstationarity of process data poses multifaceted challenges to them. First, conventional stationary fault detection methods encounter difficulties in discerning evolving trends within nonstationary data. Secondly, the majority of current nonstationary fault detection methods directly extract features from all variables, rendering them susceptible to redundant interference. Moreover, nonstationary trends possess the capacity to conceal and modify the correlations among variables. Coupled with the smearing effect of faults, it is challenging to achieve accurate fault diagnosis. To address these challenges, this paper proposes sparse Wasserstein stationary subspace analysis (SWSSA). Specifically, a ℓ2,p-norm constraint is introduced to endow the stationary subspace model with excellent sparse representation capability. Furthermore, recognizing that fault variables within the sparse stationary subspace influence only a limited subset of stationary sources, this paper proposes a novel contribution analysis method based on local dynamic preserving projection (LDPP), termed LDPPBC, which can effectively mitigate the smearing effect on nonstationary fault diagnosis. LDPPBC establishes a LDPP matrix by extracting the latent positional information of fault variables within the stationary subspace. This allows LDPPBC to selectively analyze the contributions of variables within the latent fault subspace to achieve precise fault diagnosis while avoiding the interference of variable contributions from the fault-free subspace. Finally, the superiority of the proposed method is thoroughly validated through a numerical simulation, a continuous stirred tank reactor, and a real industrial roaster.

2.
IEEE Trans Cybern ; PP2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748528

RESUMEN

In gene regulatory networks (GRNs), it is important to model gene regulation based on a priori information and experimental data. As a useful mathematical model, probabilistic Boolean networks (PBNs) have been widely applied in GRNs. This article addresses the optimal reconstruction problem of PBNs based on several priori Boolean functions and sampled data. When all candidate Boolean functions are known in advance, the optimal reconstruction problem is reformulated into an optimization problem. This problem can be well solved by a recurrent neural network approach which decreases the computational cost. When parts of candidate Boolean functions are known in advance, necessary and sufficient conditions are provided for the reconstruction of PBNs. In this case, two types of reconstruction problems are further proposed: one is aimed at minimizing the number of reconstructed Boolean functions, and the other one is aimed at maximizing the selection probability of the main dynamics under noises. At last, examples in GRNs are elaborated to demonstrate the effectiveness of the main results.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38656848

RESUMEN

For industrial processes, it is significant to carry out the dynamic modeling of data series for quality prediction. However, there are often different sampling rates between the input and output sequences. For the most traditional data series models, they have to carefully select the labeled sample sequence to build the dynamic prediction model, while the massive unlabeled input sequences between labeled samples are directly discarded. Moreover, the interactions of the variables and samples are usually not fully considered for quality prediction at each labeled step. To handle these problems, a hierarchical self-attention network (HSAN) is designed for adaptive dynamic modeling. In HSAN, a dynamic data augmentation is first designed for each labeled step to include the unlabeled input sequences. Then, a self-attention layer of variable level is proposed to learn the variable interactions and short-interval temporal dependencies. After that, a self-attention layer of sample level is further developed to model the long-interval temporal dependencies. Finally, a long short-term memory network (LSTM) network is constructed to model the new sequence that contains abundant interactions for quality prediction. The experiment on an industrial hydrocracking process shows the effectiveness of HSAN.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38598392

RESUMEN

This article concerns the investigation on the consensus problem for the joint state-uncertainty estimation of a class of parabolic partial differential equation (PDE) systems with parametric and nonparametric uncertainties. We propose a two-layer network consisting of informed and uninformed boundary observers where novel adaptation laws are developed for the identification of uncertainties. Particularly, all observer agents in the network transmit their information with each other across the entire network. The proposed adaptation laws include a penalty term of the mismatch between the parameter estimates generated by the other observer agents. Moreover, for the nonparametric uncertainties, radial basis function (RBF) neural networks are employed for the universal approximation of unknown nonlinear functions. Given the persistently exciting condition, it is shown that the proposed network of adaptive observers can achieve exponential joint state-uncertainty estimation in the presence of parametric uncertainties and ultimate bounded estimation in the presence of nonparametric uncertainties based on the Lyapunov stability theory. The effects of the proposed consensus method are demonstrated through a typical reaction-diffusion system example, which implies convincing numerical findings.

5.
IEEE Trans Cybern ; 54(5): 2696-2707, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38466589

RESUMEN

Soft sensors have been increasingly applied for quality prediction in complex industrial processes, which often have different scales of topology and highly coupled spatiotemporal features. However, the existing soft sensing models usually face difficulties in extracting the multiscale local spatiotemporal features in multicoupled complex process data and harnessing them to their full potential to improve the prediction performance. Therefore, a multiscale attention-based CNN (MSACNN) is proposed in this article to alleviate such problems. In MSACNN, convolutional kernels of different sizes are first designed in parallel in the convolutional layers, which can generate feature maps containing local spatiotemporal features at different scales. Meanwhile, a channel-wise attention mechanism is designed on the feature maps in parallel to get their attention weights, representing the significance of the local spatiotemporal feature at different scales. The superiority of the proposed MSACNN over the other state-of-the-art methods is validated through the performance evaluation in two real industrial processes.

6.
IEEE Trans Neural Netw Learn Syst ; 35(3): 3077-3090, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231813

RESUMEN

Making proper decision online in complex environment during the blast furnace (BF) operation is a key factor in achieving long-term success and profitability in the steel manufacturing industry. Regulatory lags, ore source uncertainty, and continuous decision requirement make it a challenging task. Recently, reinforcement learning (RL) has demonstrated state-of-the-art performance in various sequential decision-making problems. However, the strict safety requirements make it impossible to explore optimal decisions through online trial and error. Therefore, this article proposes a novel offline RL approach designed to ensure safety, maximize return, and address issues of partially observed states. Specifically, it utilizes an off-policy actor-critic framework to infer the optimal decision from expert operation trajectories. The "actor" in this framework is jointly trained by the supervision and evaluation signals to make decision with low risk and high return. Furthermore, we investigate a recurrent version of the actor and critic networks to better capture the complete observations, which solves the partially observed Markov decision process (POMDP) arising from sensor limitations. Verification within the BF smelting process demonstrates the improvements of the proposed algorithm in performance, i.e., safety and return.

7.
IEEE Trans Cybern ; 54(2): 974-987, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37535488

RESUMEN

This article studies the performance monitoring problem for the potassium chloride flotation process, which is a critical component of potassium fertilizer processing. To address its froth image segmentation problem, this article proposes a multiscale feature extraction and fusion network (MsFEFNet) to overcome the multiscale and weak edge characteristics of potassium chloride flotation froth images. MsFEFNet performs simultaneous feature extraction at multiple image scales and automatically learns spatial information of interest at each scale to achieve efficient multiscale information fusion. In addition, the potassium chloride flotation process is a multistage dynamic process with massive unlabeled data. To overcome its dynamic time-varying and working condition spatial similarity characteristics, a semi-supervised froth-grade prediction model based on a temporal-spatial neighborhood learning network combined with Mean Teacher (MT-TSNLNet) is proposed. MT-TSNLNet designs a new objective function for learning the temporal-spatial neighborhood structure of data. The introduction of Mean Teacher can further utilize unlabeled data to promote the proposed prediction model to better track the concentrate grade. To verify the effectiveness of the proposed MsFEFNet and MT-TSNLNet, froth image segmentation and grade prediction experiments are performed on a real-world potassium chloride flotation process dataset.

8.
IEEE Trans Neural Netw Learn Syst ; 35(3): 2942-2955, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37018089

RESUMEN

With the digital transformation of process manufacturing, identifying the system model from process data and then applying to predictive control has become the most dominant approach in process control. However, the controlled plant often operates under changing operating conditions. What is more, there are often unknown operating conditions such as first appearance operating conditions, which make traditional predictive control methods based on identified model difficult to adapt to changing operating conditions. Moreover, the control accuracy is low during operating condition switching. To solve these problems, this article proposes an error-triggered adaptive sparse identification for predictive control (ETASI4PC) method. Specifically, an initial model is established based on sparse identification. Then, a prediction error-triggered mechanism is proposed to monitor operating condition changes in real time. Next, the previously identified model is updated with the fewest modifications by identifying parameter change, structural change, and combination of changes in the dynamical equations, thus achieving precise control to multiple operating conditions. Considering the problem of low control accuracy during the operating condition switching, a novel elastic feedback correction strategy is proposed to significantly improve the control accuracy in the transition period and ensure accurate control under full operating conditions. To verify the superiority of the proposed method, a numerical simulation case and a continuous stirred tank reactor (CSTR) case are designed. Compared with some state-of-the-art methods, the proposed method can rapidly adapt to frequent changes in operating conditions, and it can achieve real-time control effects even for unknown operating conditions such as first appearance operating conditions.

9.
IEEE Trans Neural Netw Learn Syst ; 35(3): 3062-3076, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37938955

RESUMEN

Modern industry processes are typically composed of multiple operating units with reaction interaction and energy-mass coupling, which result in a mixed time-varying and spatial-temporal coupling of process variables. It is challenging to develop a comprehensive and precise fault detection model for the multiple interconnected units by simple superposition of the individual unit models. In this study, the fault detection problem is formulated as a spatial-temporal fault detection problem utilizing process data of multiple interconnected unit processes. A spatial-temporal variational graph attention autoencoder (STVGATE) using interactive information is proposed for fault detection, which aims to effectively capture the spatial and temporal features of the interconnected unit processes. First, slow feature analysis (SFA) is implemented to extract temporal information that reveals the dynamic relevance of the process data. Then, an integration method of metric learning and prior knowledge is proposed to construct coupled spatial relationships based on temporal information. In addition, a variational graph attention autoencoder (VGATE) is suggested to extract temporal and spatial information for fault detection, which incorporates the dominances of variational inference and graph attention mechanisms. The proposed method can automatically extract and deeply mine spatial-temporal interactive feature information to boost detection performance. Finally, three industrial process experiments are performed to verify the feasibility and effectiveness of the proposed method. The results demonstrate that the proposed method dramatically increases the fault detection rate (FDR) and reduces the false alarm rate (FAR).

10.
Neural Netw ; 169: 352-364, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922717

RESUMEN

Recently, many super-resolution (SR) methods based on convolutional neural networks (CNNs) have achieved superior performance by utilizing deep and heavy models, which may not be suitable for real-world low-budget devices. To address this issue, we propose a novel lightweight SR network called a multi-scale feature selection network (MFSN). As the basic building block of MFSN, the multi-scale feature selection block (MFSB) is presented to extract the rich multi-scale features from a coarse-to-fine receptive field level. For a better representation ability, a wide-activated residual unit is adopted in each branch of MFSB except the last one. In MFSB, the scale selection module (SSM) is designed to effectively fuse the features from two adjacent branches by adjusting receptive field sizes adaptively. Further, a comprehensive channel attention mechanism (CCAM) is integrated into SSM to learn the dynamic selection weight by considering the local and global inter-channel dependencies. Extensive experimental results illustrate that the proposed MFSN is superior to other lightweight methods.


Asunto(s)
Aprendizaje , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
11.
IEEE Trans Neural Netw Learn Syst ; 35(3): 3229-3241, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37195852

RESUMEN

The precise control of the spatiotemporal process in a roller kiln is crucial in the production of Ni-Co-Mn layered cathode material of lithium-ion batteries. Since the product is extremely sensitive to temperature distribution, temperature field control is of great significance. In this article, an event-triggered optimal control (ETOC) method with input constraints for the temperature field is proposed, which takes up an important position in reducing the communication and computation costs. A nonquadratic cost function is adopted to describe the system performance with input constraints. First, we present the problem description of the temperature field event-triggered control, where this field is described by a partial differential equation (PDE). Then, the event-triggered condition is designed according to the information of system states and control inputs. On this basis, a framework of the event-triggered adaptive dynamic programming (ETADP) method that is based on the model reduction technology is proposed for the PDE system. A critic network is used to approach the optimal performance index by a neural network (NN) together with that an actor network is used to optimize the control strategy. Furthermore, an upper bound of the performance index and a lower bound of interexecution times, as well as the stabilities of the impulsive dynamic system and the closed-loop PDE system, are also proved. Simulation verification demonstrates the effectiveness of the proposed method.

12.
IEEE Trans Cybern ; 54(5): 2757-2770, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38153828

RESUMEN

Early classification predicts the class of the incoming sequences before it is completely observed. How to quickly classify streaming time series without losing interpretability through early classification method is a challenging problem. A novel memory shapelet learning framework for early classification is proposed in this article. First, a memory distance matrix is introduced to store the historical characteristics of streaming time series, which can alleviate repetitive calculations caused by the growing length of time series. Second, early interpretable shapelets are extracted in the proposed method by optimizing both accuracy objective and earliness objective simultaneously. The proposed method employs end-to-end learning, which allows the model to directly learn early shapelets without the necessity of searching for numerous candidate shapelets. Third, an objective function of memory shapelet learning is proposed by overall considering accuracy and earliness, which can be optimized by gradient descent algorithm. Finally, experiments are conducted on benchmark dataset UCR, Tennessee Eastman process, and real-world aluminum electrolysis process in China. Comparable results with other state-of-the-art methods demonstrate the superior performance of the proposed method in interpretability, accuracy, earliness, and time complexity.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38145510

RESUMEN

With the rapid development of modern industry and the increasing prominence of artificial intelligence, data-driven process monitoring methods have gained significant popularity in industrial systems. Traditional static monitoring models struggle to represent the new modes that arise in industrial production processes due to changes in production environments and operating conditions. Retraining these models to address the changes often leads to high computational complexity. To address this issue, we propose a multimode process monitoring method based on element-aware lifelong dictionary learning (EaLDL). This method initially treats dictionary elements as fundamental units and measures the global importance of dictionary elements from the perspective of the multimode global learning process. Subsequently, to ensure that the dictionary can represent new modes without losing the representation capability of historical modes during the updating process, we construct a novel surrogate loss to impose constraints on the update of dictionary elements. This constraint enables the continuous updating of the dictionary learning (DL) method to accommodate new modes without compromising the representation of previous modes. Finally, to evaluate the effectiveness of the proposed method, we perform comprehensive experiments on numerical simulations as well as an industrial process. A comparison is made with several advanced process monitoring methods to assess its performance. Experimental results demonstrate that our proposed method achieves a favorable balance between learning new modes and retaining the memory of historical modes. Moreover, the proposed method exhibits insensitivity to initial points, delivering satisfactory results under various initial conditions.

14.
Entropy (Basel) ; 25(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998231

RESUMEN

Currently, the research on the predictions of remaining useful life (RUL) of rotating machinery mainly focuses on the process of health indicator (HI) construction and the determination of the first prediction time (FPT). In complex industrial environments, the influence of environmental factors such as noise may affect the accuracy of RUL predictions. Accurately estimating the remaining useful life of bearings plays a vital role in reducing costly unscheduled maintenance and increasing machine reliability. To overcome these problems, a health indicator construction and prediction method based on multi-featured factor analysis are proposed. Compared with the existing methods, the advantages of this method are the use of factor analysis, to mine hidden common factors from multiple features, and the construction of health indicators based on the maximization of variance contribution after rotation. A dynamic window rectification method is designed to reduce and weaken the stochastic fluctuations in the health indicators. The first prediction time was determined by the cumulative gradient change in the trajectory of the HI. A regression-based adaptive prediction model is used to learn the evolutionary trend of the HI and estimate the RUL of the bearings. The experimental results of two publicly available bearing datasets show the advantages of the method.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37310819

RESUMEN

Latent variable-based process monitoring (PM) models have been generously developed by shallow learning approaches, such as multivariate statistical analysis and kernel techniques. Owing to their explicit projection objectives, the extracted latent variables are usually meaningful and easily interpretable in mathematical terms. Recently, deep learning (DL) has been introduced to PM and has exhibited excellent performance because of its powerful presentation capability. However, its complex nonlinearity prevents it from being interpreted as human-friendly. It is a mystery how to design a proper network structure to achieve satisfactory PM performance for DL-based latent variable models (LVMs). In this article, a variational autoencoder-based interpretable LVM (VAE-ILVM) is developed for PM. Based on Taylor expansions, two propositions are proposed to guide the design of appropriate activation functions for VAE-ILVM, allowing nondisappearing fault impact terms contained in the generated monitoring metrics (MMs). During threshold learning, the sequence of counting that test statistics exceed the threshold is considered a martingale, a representative of weakly dependent stochastic processes. A de la Peña inequality is then adopted to learn a suitable threshold. Finally, two chemical examples verify the effectiveness of the proposed method. The use of de la Peña inequality significantly reduces the minimum required sample size for modeling.

16.
IEEE Trans Cybern ; 53(5): 2805-2817, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-34793310

RESUMEN

Temperature field control is crucial for the comprehensive performance of Ni-Co-Mn layered cathode material that is the most important part of lithium-ion batteries. Starting from the aspect of a class of distributed parameter systems described by highly dissipative partial differential equations (PDEs), an event-triggered optimal control (ETOC) method based on adaptive dynamic programming (ADP) for the roller kiln temperature field is proposed. First, we formulate the event-triggered control problem of the temperature field under the general framework of PDE systems. Then, an event-triggered condition is designed based on the stability of the closed-loop PDE system, which also guarantees the upper bound of the performance index. Subsequently, ADP technology is adopted to realize the ETOC, where the critic network is employed to approximate the optimal value function. Since the studied system can be regarded as an impulsive dynamic system with flow dynamics and jump dynamics simultaneously, the stability of the impulsive dynamic system combined with the ADP-based closed-loop PDE system is proved. Finally, simulation results on the temperature field verify the effectiveness of the proposed method.

17.
IEEE Trans Neural Netw Learn Syst ; 34(5): 2693-2700, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-34499607

RESUMEN

In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the Q -learning ( [Formula: see text]) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.

18.
IEEE Trans Cybern ; 53(2): 695-706, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35507613

RESUMEN

Missing values are ubiquitous in industrial data sets because of multisampling rates, sensor faults, and transmission failures. The incomplete data obstruct the effective use of data and degrade the performance of data-driven models. Numerous imputation algorithms have been proposed to deal with missing values, primarily based on supervised learning, that is, imputing the missing values by constructing a prediction model with the remaining complete data. They have limited performance when the amount of incomplete data is overwhelming. Moreover, many methods have not considered the autocorrelation of time-series data. Thus, an adaptive-learned median-filled deep autoencoder (AM-DAE) is proposed in this study, aiming to impute missing values of industrial time-series data in an unsupervised manner. It continuously replaces the missing values by the median of the input data and its reconstruction, which allows the imputation information to be transmitted with the training process. In addition, an adaptive learning strategy is adopted to guide the AM-DAE paying more attention to the reconstruction learning of nonmissing values or missing values in different iteration periods. Finally, two industrial examples are used to verify the superior performance of the proposed method compared with other advanced techniques.

19.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10130-10140, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35439145

RESUMEN

This article investigates the design of pinning controllers for state feedback stabilization of probabilistic Boolean control networks (PBCNs), based on the condensation digraph method. First, two effective algorithms are presented to achieve state feedback stabilization of the considered system from the perspective of condensation digraph. One is to find the desired matrix, and the other is to search for the minimum number of pinned nodes and specific pinned nodes. Then, all the mode-independent pinning controllers can be designed based on the desired matrix and pinned nodes. Several examples are delineated to illustrate the validity of the main results.

20.
ISA Trans ; 134: 472-480, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36088132

RESUMEN

As a critical variable in the roasting process, the roasting temperature has a significant influence on operating conditions. Model predictive control (MPC) provides a path to stabilize the roasting temperature. However, process data collected at different periods usually follow different distributions due to the fluctuation of feed composition for the roasting process, result in a model mismatch on online control. For this reason, a transfer predictive control method based on inter-domain mapping learning (IDML-MPC) is proposed. The proposed method first treat historical and online data as two domains. Then, a distribution mapping function from one domain to another domain is learned to make the distribution of the historical data follow that of the online data. Finally, an accurate online prediction model is built, roasting temperature control is achieved by minimizing the cost function with respect to the predicted value and the control input. The effectiveness of the proposed method is demonstrated by comparative experiments based on a numerical example and a simulation platform of the roasting process. Experimental results compared with some state-of-the-art methods show that it is necessary to take into account the distribution differences between historical data and online data when production conditions change. The IDML-MPC improved the control performance for the roasting temperature with an average 56.98% reduction in the root mean square error.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA