Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artif Intell Med ; 153: 102886, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749310

RESUMEN

Tuberculous pleural effusion poses a significant threat to human health due to its potential for severe disease and mortality. Without timely treatment, it may lead to fatal consequences. Therefore, early identification and prompt treatment are crucial for preventing problems such as chronic lung disease, respiratory failure, and death. This study proposes an enhanced differential evolution algorithm based on colony predation and dispersed foraging strategies. A series of experiments conducted on the IEEE CEC 2017 competition dataset validated the global optimization capability of the method. Additionally, a binary version of the algorithm is introduced to assess the algorithm's ability to address feature selection problems. Comprehensive comparisons of the effectiveness of the proposed algorithm with 8 similar algorithms were conducted using public datasets with feature sizes ranging from 10 to 10,000. Experimental results demonstrate that the proposed method is an effective feature selection approach. Furthermore, a predictive model for tuberculous pleural effusion is established by integrating the proposed algorithm with support vector machines. The performance of the proposed model is validated using clinical records collected from 140 tuberculous pleural effusion patients, totaling 10,780 instances. Experimental results indicate that the proposed model can identify key correlated indicators such as pleural effusion adenosine deaminase, temperature, white blood cell count, and pleural effusion color, aiding in the clinical feature analysis of tuberculous pleural effusion and providing early warning for its treatment and prediction.


Asunto(s)
Algoritmos , Derrame Pleural , Máquina de Vectores de Soporte , Tuberculosis Pleural , Humanos , Derrame Pleural/microbiología , Tuberculosis Pleural/diagnóstico , Adenosina Desaminasa/metabolismo , Recuento de Leucocitos
2.
Comput Biol Med ; 146: 105618, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35690477

RESUMEN

COVID-19 is currently raging worldwide, with more patients being diagnosed every day. It usually is diagnosed by examining pathological photographs of the patient's lungs. There is a lot of detailed and essential information on chest radiographs, but manual processing is not as efficient or accurate. As a result, how efficiently analyzing and processing chest radiography of COVID-19 patients is an important research direction to promote COVID-19 diagnosis. To improve the processing efficiency of COVID-19 chest films, a multilevel thresholding image segmentation (MTIS) method based on an enhanced multiverse optimizer (CCMVO) is proposed. CCMVO is improved from the original Multi-Verse Optimizer by introducing horizontal and vertical search mechanisms. It has a more assertive global search ability and can jump out of the local optimum in optimization. The CCMVO-based MTIS method can obtain higher quality segmentation results than HHO, SCA, and other forms and is less prone to stagnation during the segmentation process. To verify the performance of the proposed CCMVO algorithm, CCMVO is first compared with DE, MVO, and other algorithms by 30 benchmark functions; then, the proposed CCMVO is applied to image segmentation of COVID-19 chest radiography; finally, this paper verifies that the combination of MTIS and CCMVO is very successful with good segmentation results by using the Feature Similarity Index (FSIM), the Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM). Therefore, this research can provide an effective segmentation method for a medical organization to process COVID-19 chest radiography and then help doctors diagnose coronavirus pneumonia (COVID-19).


Asunto(s)
COVID-19 , Algoritmos , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Radiografía , Relación Señal-Ruido
3.
Comput Biol Med ; 146: 105563, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551010

RESUMEN

The heap-based optimizer (HBO) is an optimization method proposed in recent years that may face local stagnation problems and show slow convergence speed due to the lack of detailed analysis of optimal solutions and a comprehensive search. Therefore, to mitigate these drawbacks and strengthen the performance of the algorithm in the field of medical diagnosis, a new MGOHBO method is proposed by introducing the modified Rosenbrock's rotational direction method (MRM), an operator from the grey wolf optimizer (GWM), and an orthogonal learning strategy (OL). The MGOHBO is compared with eleven famous and improved optimizers on IEEE CEC 2017. The results on benchmark functions indicate that the boosted MGOHBO has several significant advantages in terms of convergence accuracy and speed of the process. Additionally, this article analyzed the diversity and balance of MGOHBO in detail. Finally, the proposed MGOHBO algorithm is utilized to optimize the kernel extreme learning machines (KELM), and a new MGOHBO-KELM is proposed. To validate the performance of MGOHBO-KELM, seven disease diagnostic questions were introduced for testing in this work. In contrast to advanced models such as HBO-KELM and BP, it can be concluded that the MGOHBO-KELM model can achieve optimal results, which also proves that it has practical significance in solving medical diagnosis problems.


Asunto(s)
Algoritmos , Aprendizaje Automático , Benchmarking
4.
Comput Biol Med ; 144: 105356, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35299042

RESUMEN

Classification models such as Multi-Verse Optimization (MVO) play a vital role in disease diagnosis. To improve the efficiency and accuracy of MVO, in this paper, the defects of MVO are mitigated and the improved MVO is combined with kernel extreme learning machine (KELM) for effective disease diagnosis. Although MVO obtains some relatively good results on some problems of interest, it suffers from slow convergence speed and local optima entrapment for some many-sided basins, especially multi-modal problems with high dimensions. To solve these shortcomings, in this study, a new chaotic simulated annealing overhaul of MVO (CSAMVO) is proposed. Based on MVO, two approaches are adopted to offer a relatively stable and efficient convergence speed. Specifically, a chaotic intensification mechanism (CIP) is applied to the optimal universe evaluation stage to increase the depth of the universe search. After obtaining relatively satisfactory results, the simulated annealing algorithm (SA) is employed to reinforce the capability of MVO to avoid local optima. To evaluate its performance, the proposed CSAMVO approach was compared with a wide range of classical algorithms on thirty-nine benchmark functions. The results show that the improved MVO outperforms the other algorithms in terms of solution quality and convergence speed. Furthermore, based on CSAMVO, a hybrid KELM model termed CSAMVO-KELM is established for disease diagnosis. To evaluate its effectiveness, the new hybrid system was compared with a multitude of competitive classifiers on two disease diagnosis problems. The results demonstrate that the proposed CSAMVO-assisted classifier can find solutions with better learning potential and higher predictive performance.


Asunto(s)
Algoritmos , Benchmarking
5.
Comput Biol Med ; 142: 105179, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074736

RESUMEN

To improve the diagnosis of Lupus Nephritis (LN), a multilevel LN image segmentation method is developed in this paper based on an improved slime mould algorithm. The search of the optimal threshold set is key to multilevel thresholding image segmentation (MLTIS). It is well known that swarm-based methods are more efficient than the traditional methods because of the high complexity in finding the optimal threshold, especially when performing image partitioning at high threshold levels. However, swarm-based methods tend to obtain the poor quality of the found segmentation thresholds and fall into local optima during the process of segmentation. Therefore, this paper proposes an ASMA-based MLTIS approach by combining an improved slime mould algorithm (ASMA),  where ASMA is mainly implemented by introducing the position update mechanism of the artificial bee colony (ABC) into the SMA. To prove the superiority of the ASMA-based MLTIS method, we first conducted a comparison experiment between ASMA and 11 peers using 30 test functions. The experimental results fully demonstrate that ASMA can obtain high-quality solutions and almost does not suffer from premature convergence. Moreover, using standard images and LN images, we compared the ASMA-based MLTIS method with other peers and evaluated the segmentation results using three evaluation indicators called PSNR, SSIM, and FSIM. The proposed ASMA can be an excellent swarm intelligence optimization method that can maintain a delicate balance during the segmentation process of LN images, and thus the ASMA-based MLTIS method has great potential to be used as an image segmentation method for LN images. The lastest updates for the SMA algorithm are available in https://aliasgharheidari.com/SMA.html.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Nefritis Lúpica , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Nefritis Lúpica/diagnóstico por imagen
6.
Comput Biol Med ; 139: 104941, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801864

RESUMEN

An appropriate threshold is a key to using the multi-threshold segmentation method to solve image segmentation problems, and the swarm intelligence (SI) optimization algorithm is one of the popular methods to obtain the optimal threshold. Moreover, Salp Swarm Algorithm (SSA) is a recently released swarm intelligent optimization algorithm. Compared with other SI optimization algorithms, the optimization solution strategy of the SSA still needs to be improved to enhance further the solution accuracy and optimization efficiency of the algorithm. Accordingly, this paper designs an effective segmentation method based on a non-local mean 2D histogram and 2D Kapur's entropy called SSA with Gaussian Barebone and Stochastic Fractal Search (GBSFSSSA) by combining Gaussian Barebone and Stochastic Fractal Search mechanism. In GBSFSSSA, the Gaussian Barebone and Stochastic Fractal Search mechanism effectively balance the global search ability and local search ability of the basic SSA. The CEC2017 competition data set is used to prove the algorithm's performance, and GBSFSSSA shows an absolute advantage over some typical competitive algorithms. Furthermore, the algorithm is applied in image segmentation of COVID-19 CT images, and the results are analyzed based on three different metrics: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM), which can lead to the conclusion that the overall performance of GBSFSSSA is better than the comparison algorithm and can effectively improve the segmentation of medical images. Therefore, it is justified that GBSFSSSA is a reliable and effective method in solving the multi-threshold image segmentation problem.


Asunto(s)
COVID-19 , Procesamiento de Imagen Asistido por Computador , Algoritmos , Fractales , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...