Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenetics Chromatin ; 14(1): 43, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503558

RESUMEN

BACKGROUND: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson's disease and schizophrenia. Many genetic variants affect regulatory regions and alter gene expression in a cell-type-specific manner depending on the chromatin structure and accessibility. RESULTS: We report 20,658 single-nuclei chromatin accessibility profiles of ventral midbrain from two genetically and phenotypically distinct mouse strains. We distinguish ten cell types based on chromatin profiles and analysis of accessible regions controlling cell identity genes highlights cell-type-specific key transcription factors. Regulatory variation segregating the mouse strains manifests more on transcriptome than chromatin level. However, cell-type-level data reveals changes not captured at tissue level. To discover the scope and cell-type specificity of cis-acting variation in midbrain gene expression, we identify putative regulatory variants and show them to be enriched at differentially expressed loci. Finally, we find TCF7L2 to mediate trans-acting variation selectively in midbrain neurons. CONCLUSIONS: Our data set provides an extensive resource to study gene regulation in mesencephalon and provides insights into control of cell identity in the midbrain and identifies cell-type-specific regulatory variation possibly underlying phenotypic and behavioural differences between mouse strains.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Cromatina/genética , Mesencéfalo/metabolismo , Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Genes Brain Behav ; 20(8): e12769, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453370

RESUMEN

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA-C56BL/6 J and A/J-to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins.


Asunto(s)
Colágeno Tipo IV/genética , Cuerpo Estriado/metabolismo , Proyección Neuronal , Sitios de Carácter Cuantitativo , Animales , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Cuerpo Estriado/crecimiento & desarrollo , Dopamina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL
3.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032268

RESUMEN

Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Nefronas/embriología , Nefronas/crecimiento & desarrollo , Organogénesis/genética , Vía de Señalización Wnt/genética , Animales , Proteína Axina/metabolismo , Diferenciación Celular/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre/citología , Proteínas Wnt/metabolismo
4.
Front Genet ; 11: 566734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173537

RESUMEN

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson's disease and schizophrenia. Genetic variation between individuals can affect the integrity and function of dopaminergic neurons but the DNA variants and molecular cascades modulating dopaminergic neurons and other cells types of ventral midbrain remain poorly defined. Three genetically diverse inbred mouse strains - C57BL/6J, A/J, and DBA/2J - differ significantly in their genomes (∼7 million variants), motor and cognitive behavior, and susceptibility to neurotoxins. To further dissect the underlying molecular networks responsible for these variable phenotypes, we generated RNA-seq and ChIP-seq data from ventral midbrains of the 3 mouse strains. We defined 1000-1200 transcripts that are differentially expressed among them. These widespread differences may be due to altered activity or expression of upstream transcription factors. Interestingly, transcription factors were significantly underrepresented among the differentially expressed genes, and only one transcription factor, Pttg1, showed significant differences between all three strains. The changes in Pttg1 expression were accompanied by consistent alterations in histone H3 lysine 4 trimethylation at Pttg1 transcription start site. The ventral midbrain transcriptome of 3-month-old C57BL/6J congenic Pttg1-/- mutants was only modestly altered, but shifted toward that of A/J and DBA/2J in 9-month-old mice. Principle component analysis (PCA) identified the genes underlying the transcriptome shift and deconvolution of these bulk RNA-seq changes using midbrain single cell RNA-seq data suggested that the changes were occurring in several different cell types, including neurons, oligodendrocytes, and astrocytes. Taken together, our results show that Pttg1 contributes to gene regulatory variation between mouse strains and influences mouse midbrain transcriptome during aging.

5.
Sci Rep ; 9(1): 13433, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530822

RESUMEN

Kidney mesenchyme (KM) and nephron progenitors (NPs) depend on WNT activity, and their culture in vitro requires extensive repertoire of recombinant proteins and chemicals. Here we established a robust, simple culture of mouse KM using a combination of 3D Matrigel and growth media supplemented with Fibroblast Growth Factor 2 (FGF2) and Src inhibitor PP2. This allows dissociated KM to spontaneously self-organize into spheres. To reassess the requirement of WNT activity in KM self-organization and NPs maintenance, cells were cultured with short pulse of high-dose GSK3ß inhibitor BIO, on a constant low-dose or without BIO. Robust proliferation at 48 hours and differentiation at 1 week were observed in cultures with high BIO pulse. Importantly, dissociated KM cultured without BIO, similarly to that exposed to constant low dose of BIO, maintained NPs up to one week and spontaneously differentiated into nephron tubules at 3 weeks of culture. Our results show that KM is maintained and induced to differentiate in a simple culture system. They also imply that GSK3ß/WNT-independent pathways contribute to the maintenance and induction of mouse KM. The robust and easy 3D culture enables further characterization of NPs, and may facilitate disease modeling when applied to human cells.


Asunto(s)
Riñón/citología , Riñón/embriología , Nicho de Células Madre , Células Madre/citología , Técnicas de Cultivo de Tejidos/métodos , Vía de Señalización Wnt , Animales , Células Cultivadas , Medios de Cultivo/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de Homeodominio/metabolismo , Indoles/farmacología , Mesodermo/citología , Ratones , Nefronas/citología , Nefronas/efectos de los fármacos , Organogénesis , Oximas/farmacología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
6.
Sci Rep ; 9(1): 5302, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923332

RESUMEN

Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cell-line derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf   hyper mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3'UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Infertilidad/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Regiones no Traducidas 3'/genética , Animales , Apoptosis/genética , Ciclo Celular/genética , Movimiento Celular/genética , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Infertilidad/congénito , Infertilidad/patología , Riñón/anomalías , Riñón/embriología , Riñón/patología , Masculino , Ratones , Ratones Transgénicos , MicroARNs/metabolismo , Técnicas de Cultivo de Órganos , Transducción de Señal/genética , Células Madre/fisiología , Uréter/anomalías , Uréter/embriología , Uréter/patología , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/patología
7.
PLoS Genet ; 10(3): e1004193, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603431

RESUMEN

Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.


Asunto(s)
Adhesiones Focales/genética , Riñón/crecimiento & desarrollo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Animales , Células Epiteliales/metabolismo , Riñón/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Morfogénesis/genética , Fosforilación , Transducción de Señal/genética , Vinculina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...