Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276574

RESUMEN

This review highlights the advantages of high-precision liquid chromatography with an electrochemical detector (HPLC-ECD) in detecting and quantifying biological samples obtained through intracerebral microdialysis, specifically the serotonergic and dopaminergic systems: Serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), 3-metoxytryptamin (3-MT) and homovanillic acid (HVA). Recognized for its speed and selectivity, HPLC enables direct analysis of intracerebral microdialysis samples without complex derivatization. Various chromatographic methods, including reverse phase (RP), are explored for neurotransmitters (NTs) and metabolites separation. Electrochemical detector (ECD), particularly with glassy carbon (GC) electrodes, is emphasized for its simplicity and sensitivity, aimed at enhancing reproducibility through optimization strategies such as modified electrode materials. This paper underscores the determination of limits of detection (LOD) and quantification (LOQ) and the linear range (L.R.) showcasing the potential for real-time monitoring of compounds concentrations. A non-exhaustive compilation of literature values for LOD, LOQ, and L.R. from recent publications is included.


Asunto(s)
Dopamina , Serotonina , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Dopamina/metabolismo , Cromatografía Liquida , Serotonina/metabolismo , Neurotransmisores , Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido Hidroxiindolacético/análisis , Ácido Hidroxiindolacético/metabolismo , Monoaminas Biogénicas
2.
Mol Psychiatry ; 29(3): 718-729, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38123728

RESUMEN

Chronic stress causes cognitive deficits, such as impairments in episodic-like hippocampus-dependent memory. Stress regulates an opioid-related neuropeptide named Nociceptin/Orphanin FQ (N/OFQ), the ligand of the G protein-coupled receptor NOP. Since this peptide has deleterious effects on memory, we hypothesized that the N/OFQ system could be a mediator of the negative effects of stress on memory. Chronic stress was mimicked by chronic exposure to corticosterone (CORT). The NOP receptor was either acutely blocked using selective antagonists, or knocked-down specifically in the hippocampus using genetic tools. Long-term memory was assessed in the object recognition (OR) and object location (OL) paradigms. Acute injection of NOP antagonists before learning had a negative impact on memory in naive mice whereas it restored memory performances in the chronic stress model. This rescue was associated with a normalization of neuronal cell activity in the CA3 part of the hippocampus. Chronic CORT induced an upregulation of the N/OFQ precursor in the hippocampus. Knock-down of the NOP receptor in the CA3/Dentate Gyrus region prevented memory deficits in the CORT model. These data demonstrate that blocking the N/OFQ system can be beneficial for long-term memory in a neuroendocrine model of chronic stress. We therefore suggest that NOP antagonists could be useful for the treatment of memory deficits in stress-related disorders.


Asunto(s)
Corticosterona , Modelos Animales de Enfermedad , Hipocampo , Memoria a Largo Plazo , Receptor de Nociceptina , Nociceptina , Péptidos Opioides , Receptores Opioides , Estrés Psicológico , Animales , Receptores Opioides/metabolismo , Ratones , Estrés Psicológico/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Péptidos Opioides/metabolismo , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Antagonistas de Narcóticos/farmacología , Ratones Endogámicos C57BL , Cognición/efectos de los fármacos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico
3.
J Neuroendocrinol ; 35(12): e13344, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37857383

RESUMEN

OBJECTIVES: Intensive insulin therapy provides optimal glycemic control in patients with diabetes. However, intensive insulin therapy causes so-called iatrogenic hypoglycemia as a major adverse effect. The ventromedial hypothalamus (VMH) has been described as the primary brain area initiating the counter-regulatory response (CRR). Nevertheless, the VMH receives projections from other brain areas which could participate in the regulation of the CRR. In particular, studies suggest a potential role of the serotonin (5-HT) network. Thus, the objective of this study was to determine the contribution of 5-HT neurons in CRR control. METHODS: Complementary approaches have been used to test this hypothesis in quantifying the level of 5-HT in several brain areas by HPLC in response to insulin-induced hypoglycemia, measuring the electrical activity of dorsal raphe (DR) 5-HT neurons in response to insulin or decreased glucose level by patch-clamp electrophysiology; and measuring the CRR hormone glucagon as an index of the CRR to the modulation of the activity of 5-HT neurons using pharmacological or pharmacogenetic approaches. RESULTS: HPLC measurements show that the 5HIAA/5HT ratio is increased in several brain regions including the VMH in response to insulin-induced hypoglycemia. Patch-clamp electrophysiological recordings show that insulin, but not decreased glucose level, increases the firing frequency of DR 5-HT neurons in the DR. In vivo, both the pharmacological inhibition of 5-HT neurons by intraperitoneal injection of the 5-HT1A receptor agonist 8-OH-DPAT or the chemogenetic inhibition of these neurons reduce glucagon secretion, suggesting an impaired CRR. CONCLUSION: Taken together, these data highlight a new neuronal network involved in the regulation of the CRR. In particular, this study shows that DR 5-HT neurons detect iatrogenic hypoglycemia in response to the increased insulin level and may play an important role in the regulation of CRR.


Asunto(s)
Glucagón , Hipoglucemia , Humanos , Neuronas Serotoninérgicas , Serotonina/farmacología , Hipoglucemia/inducido químicamente , Insulina/farmacología , Glucosa , Enfermedad Iatrogénica
4.
Transl Psychiatry ; 13(1): 302, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775532

RESUMEN

Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3ß (GSK3ß) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.


Asunto(s)
Trastorno Depresivo Mayor , Transportador 2 de Cátion Orgánico , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ratones , Anhedonia , Antidepresivos/uso terapéutico , Encéfalo/metabolismo , Corticosterona/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Fluoxetina/farmacología , Quinurenina/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/metabolismo , Triptófano/metabolismo
5.
Neuropharmacology ; 241: 109730, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37758019

RESUMEN

Type 2 diabetes and obesity characterized by hallmarks of insulin resistance along with an imbalance in brain oxidative metabolism would impair intrinsic capacities (ICs), a new concept for assessing mental and physical functioning. Here, we explored the impact of physical activity on antioxidant responses and oxidative metabolism in discrete brain areas of HFD or standard diet (STD) fed mice but also its consequences on specific domains of ICs. 6-week-old Swiss male mice were exposed to a STD or a HFD for 16 weeks and half of the mice in each group had access to an activity wheel and the other half did not. As expected HFD mice displayed peripheral insulin resistance but also a persistent inhibition of aconitase activity in cortices revealing an increase in mitochondrial reactive oxygen species (ROS) production. Animals with access to the running wheel displayed an improvement of insulin sensitivity regardless of the diet factor whereas ROS production remained impaired. Moreover, although the access of the running wheel did not influence mitochondrial biomass, in the oxidative metabolism area, it produced a slight decrease in brain SOD1 and catalase expression notably in HFD fed mice. At the behavioural level, physical exercise produced anxiolytic/antidepressant-like responses and improved motor coordination in both STD and HFD fed mice. However, this non-pharmacological intervention failed to enhance cognitive performance. These findings paint a contrasting landscape about physical exercise as a non-pharmacological intervention for positively orienting the aging trajectory.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Masculino , Ratones , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Ratones Endogámicos C57BL , Estrés Oxidativo , Especies Reactivas de Oxígeno , Condicionamiento Físico Animal/fisiología
6.
Transl Psychiatry ; 13(1): 227, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365183

RESUMEN

Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.


Asunto(s)
Parvalbúminas , Inhibidores Selectivos de la Recaptación de Serotonina , Ratones , Masculino , Animales , Clorhidrato de Venlafaxina/farmacología , Parvalbúminas/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Antidepresivos/metabolismo , Interneuronas/metabolismo
7.
Hum Mol Genet ; 32(2): 244-261, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35951020

RESUMEN

The neuronal-specific SNORD115 has gathered interest because its deficiency may contribute to the pathophysiology of Prader-Willi syndrome (PWS), possibly by altering post-transcriptional regulation of the gene encoding the serotonin (HTR2C) receptor. Yet, Snord115-KO mice do not resume the main symptoms of PWS, and only subtle-altered A-to-I RNA editing of Htr2c mRNAs was uncovered. Because HTR2C signaling fine-tunes the activity of monoaminergic neurons, we addressed the hypothesis that lack of Snord115 alters monoaminergic systems. We first showed that Snord115 was expressed in both monoaminergic and non-monoaminergic cells of the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN) harboring cell bodies of dopaminergic and serotonergic neurons, respectively. Measuring the tissue level of monoamines and metabolites, we found very few differences except that the content of homovanillic acid-a metabolite of dopamine-was decreased in the orbitofrontal and prefrontal cortex of Snord115-KO mice. The latter effects were, however, associated with a few changes in monoamine tissue content connectivity across the 12 sampled brain regions. Using in vivo single-cell extracellular recordings, we reported that the firing rate of VTA dopaminergic neurons and DRN serotonergic neurons was significantly increased in Snord115-KO mice. These neural circuit dysfunctions were not, however, associated with apparent defects in binge eating, conditioned place preference to cocaine, cocaine-induced hyperlocomotion or compulsive behavior. Altogether, our multiscale study shows that the absence of Snord115 impacts central monoaminergic circuits to an extent that does not elicit gross behavioral abnormalities.


Asunto(s)
Encéfalo , Síndrome de Prader-Willi , Ratones , Animales , Encéfalo/metabolismo , Neuronas/metabolismo , Dopamina/metabolismo , Corteza Prefrontal/metabolismo , Serotonina/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo
8.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362016

RESUMEN

Studies suggest that astrocytic connexins (Cx) have an important role in the regulation of high brain functions through their ability to establish fine-tuned communication with neurons within the tripartite synapse. In light of these properties, growing evidence suggests a role of Cx in psychiatric disorders such as major depression but also in the therapeutic activity of antidepressant drugs. However, the real impact of Cx on treatment response and the underlying neurobiological mechanisms remain yet to be clarified. On this ground, the present study was designed to evaluate the functional activity of Cx in a mouse model of depression based on chronic corticosterone exposure and to determine to which extent their pharmacological inactivation influences the antidepressant-like activity of venlafaxine (VENLA). On the one hand, our results indicate that depressed mice have impaired Cx-based gap-junction and hemichannel activities. On the other hand, while VENLA exerts robust antidepressant-like activity in depressed mice; this effect is abolished by the pharmacological inhibition of Cx with carbenoxolone (CBX). Interestingly, the combination of VENLA and CBX is also associated with a higher rate of relapse after treatment withdrawal. To our knowledge, this study is one of the first to develop a model of relapse, and our results reveal that Cx-mediated dynamic neuroglial interactions play a critical role in the efficacy of monoaminergic antidepressant drugs, thus providing new targets for the treatment of depression.


Asunto(s)
Astrocitos , Conexinas , Trastorno Depresivo , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Carbenoxolona/farmacología , Conexinas/efectos de los fármacos , Conexinas/metabolismo , Fenotipo , Recurrencia , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo
9.
Mol Psychiatry ; 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207585

RESUMEN

Type-2 Diabetes (T2D) is characterized by insulin resistance and accompanied by psychiatric comorbidities including major depressive disorders (MDD). Patients with T2D are twice more likely to suffer from MDD and clinical studies have shown that insulin resistance is positively correlated with the severity of depressive symptoms. However, the potential contribution of central insulin signaling in MDD in patients with T2D remains elusive. Here we hypothesized that insulin modulates the serotonergic (5-HT) system to control emotional behavior and that insulin resistance in 5-HT neurons contributes to the development of mood disorders in T2D. Our results show that insulin directly modulates the activity of dorsal raphe (DR) 5-HT neurons to dampen 5-HT neurotransmission through a 5-HT1A receptor-mediated inhibitory feedback. In addition, insulin-induced 5-HT neuromodulation is necessary to promote anxiolytic-like effect in response to intranasal insulin delivery. Interestingly, such an anxiolytic effect of intranasal insulin as well as the response of DR 5-HT neurons to insulin are both blunted in high-fat diet-fed T2D animals. Altogether, these findings point to a novel mechanism by which insulin directly modulates the activity of DR 5-HT neurons to dampen 5-HT neurotransmission and control emotional behaviors, and emphasize the idea that impaired insulin-sensitivity in these neurons is critical for the development of T2D-associated mood disorders.

10.
Psychopharmacology (Berl) ; 239(9): 2735-2752, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35947166

RESUMEN

Major depression (MD) is one of the most common psychiatric disorders worldwide. Currently, the first-line treatment for MD targets the serotonin system but these drugs, notably the selective serotonin reuptake inhibitors, usually need 4 to 6 weeks before the benefit is felt and a significant proportion of patients shows an unsatisfactory response. Numerous treatments have been developed to circumvent these issues as venlafaxine, a mixed serotonin-norepinephrine reuptake inhibitor that binds and blocks both the SERT and NET transporters. Despite this pharmacological profile, it is difficult to have a valuable insight into its ability to produce more robust efficacy than single-acting agents. In this review, we provide an in-depth characterization of the pharmacological properties of venlafaxine from in vitro data to preclinical and clinical efficacy in depressed patients and animal models of depression to propose an indirect comparison with the most common antidepressants. Preclinical studies show that the antidepressant effect of venlafaxine is often associated with an enhancement of serotonergic neurotransmission at low doses. High doses of venlafaxine, which elicit a concomitant increase in 5-HT and NE tone, is associated with changes in different forms of plasticity in discrete brain areas. In particular, the hippocampus appears to play a crucial role in venlafaxine-mediated antidepressant effects notably by regulating processes such as adult hippocampal neurogenesis or the excitatory/inhibitory balance. Overall, depending on the dose used, venlafaxine shows a high efficacy on depressive-like symptoms in relevant animal models but to the same extent as common antidepressants. However, these data are counterbalanced by a lower tolerance. In conclusion, venlafaxine appears to be one of the most effective treatments for treatment of major depression. Still, direct comparative studies are warranted to provide definitive conclusions about its superiority.


Asunto(s)
Trastorno Depresivo Mayor , Serotonina , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ciclohexanoles/farmacología , Ciclohexanoles/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Clorhidrato de Venlafaxina/farmacología , Clorhidrato de Venlafaxina/uso terapéutico
11.
NPJ Regen Med ; 6(1): 63, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650070

RESUMEN

Tissue repair after injury in adult mammals, usually results in scarring and loss of function in contrast to lower vertebrates such as the newt and zebrafish that regenerate. Understanding the regulatory processes that guide the outcome of tissue repair is therefore a concerning challenge for regenerative medicine. In multiple regenerative animal species, the nerve dependence of regeneration is well established, but the nature of the innervation required for tissue regeneration remains largely undefined. Using our model of induced adipose tissue regeneration in adult mice, we demonstrate here that nociceptive nerves promote regeneration and their removal impairs tissue regeneration. We also show that blocking the receptor for the nociceptive neuropeptide calcitonin gene-related peptide (CGRP) inhibits regeneration, whereas CGRP administration induces regeneration. These findings reveal that peptidergic nociceptive neurons are required for adult mice tissue regeneration.

12.
Prog Brain Res ; 259: 197-228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33541677

RESUMEN

Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.


Asunto(s)
Astrocitos , Neuronas Serotoninérgicas , Antidepresivos/farmacología , Humanos , Trastornos del Humor/tratamiento farmacológico , Transmisión Sináptica
13.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477830

RESUMEN

The forced swim stress test (FST) is widely used for screening pharmacological or non-pharmacological strategies with potential antidepressant activities. Recent data have suggested that repeated FST for five consecutive days (i.e., 5d-RFSS) could be used to generate a robust depressive-like phenotype in mice. However, the face, construct, and predictive validities of 5d-RFSS have been recently challenged. This study took advantage of recent findings showing that mice vulnerability to anxiety is enhanced when animals are stressed during the dark phase, to provide new insight into the relevance of this model. Our results showed a progressive increase in time of immobility in 5d-RFSS mice relative to control non-stressed animals (sham). Three weeks later, we noticed that 5d-RFSS mice injected with the vehicle compound (Veh) still exhibited a high level of immobility in the FST whereas this behavior was reversed by the antidepressant drug amitriptyline (AMI). However, 5d-RFSS/Veh and 5d-RFSS mice/AMI mice showed normal performances in the open field, the novelty suppressed feeding and the tail suspension tests. Despite this lack of generalized behavioral deficits, an impairment of different parameters characterizing the hypothalamic-pituitary-adrenal (HPA) axis reactivity was evidenced in 5d-RFSS mice/Veh but not in 5d-RFSS mice/AMI. Despite anomalies in the HPA axis, the activity of the central serotonergic system remained unaffected in 5d-RFSS mice relative to controls. From our results, it is suggested that learned immobility does not replicate the broad spectrum of depressive symptoms observed in other chronic models of depression such as the unpredictable chronic mild stress (UCMS) model, the chronic social defeat stress (CSDS) model or chronic corticosterone (CORT) exposure but its influence on the HPA axis is remarkable. Further experiments are warranted to makes this model suitable for modelling depression and therefore refine its translational applicability.


Asunto(s)
Ansiedad/tratamiento farmacológico , Corticosterona/farmacología , Trastorno Depresivo/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Ansiedad/fisiopatología , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/patología , Conducta Animal/efectos de los fármacos , Trastorno Depresivo/patología , Modelos Animales de Enfermedad , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/patología , Ratones , Fenotipo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/patología , Estrés Psicológico/patología , Natación
14.
J Neuroendocrinol ; 33(4): e12928, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33506507

RESUMEN

The idea that insulin could influence emotional behaviours has long been suggested. However, the underlying mechanisms have yet to be solved and there is no direct and clear-cut evidence demonstrating that such action involves brain serotonergic neurones. Indeed, initial arguments in favour of the association between insulin, serotonin and mood arise from clinical or animal studies showing that impaired insulin action in type 1 or type 2 diabetes causes anxiety- and depressive symptoms along with blunted plasma and brain serotonin levels. The present review synthesises the main mechanistic hypotheses that might explain the comorbidity between diabetes and depression. It also provides a state of knowledge of the direct and indirect experimental evidence that insulin modulates brain serotonergic neurones. Finally, it highlights the literature suggesting that antidiabetic drugs present antidepressant-like effects and, conversely, that serotonergic antidepressants impact glucose homeostasis. Overall, this review provides mechanistic insights into how insulin signalling alters serotonergic neurotransmission and related behaviours bringing new targets for therapeutic options.

15.
Acta Physiol (Oxf) ; 231(4): e13601, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33316126

RESUMEN

AIM: Impairments in cerebral structure and cognitive performance in chronic heart failure (CHF) are critical components of its comorbidity spectrum. Autonomic afferents that arise from cardiac sensory fibres show enhanced activity with CHF. Desensitization of these fibres by local application of resiniferatoxin (RTX) during myocardial infarction (MI) is known to prevent cardiac hypertrophy, sympathetic hyperactivity and CHF. Whether these afferents mediate cerebral allostasis is unknown. METHODS: CHF was induced by myocardial infarction. To evaluate if cardiac afferents contribute to cerebral allostasis, RTX was acutely applied to the pericardial space in controls (RTX) and in MI treated animals (MI/RTX). Subjects were then evaluated in a series of behavioural tests recapitulating different symptoms of depressive disorders. Proteomics of the frontal cortices (FC) was performed to identify contributing proteins and pathways responsible for behavioural allostasis. RESULTS: Desensitization of cardiac afferents relieves hallmarks of an anxio/depressive-like state in mice. Unique protein signatures and regulatory pathways in FCs isolated from each treatment reveal the degree of complexity inherent in the FC response to stresses originating in the heart. While cortices from the combined treatment (MI/RTX) did not retain protein signatures from the individual treatment groups, all three groups suffer dysregulation in circadian entrainment. CONCLUSION: CHF is comorbid with an anxio/depressive-like state and ablation of cardiac afferents relieves the despair phenotype. The strikingly different proteomic profiles observed in FCs suggest that MI and RTX lead to unique brain-signalling patterns and that the combined treatment, potentially through destructive interference mechanisms, most closely resembles controls.


Asunto(s)
Insuficiencia Cardíaca , Proteómica , Animales , Cardiomegalia , Corazón , Insuficiencia Cardíaca/tratamiento farmacológico , Ratones , Ratas , Ratas Sprague-Dawley
16.
Biol Aujourdhui ; 214(3-4): 71-83, 2020.
Artículo en Francés | MEDLINE | ID: mdl-33357364

RESUMEN

Major depression is a psychiatric disorder relying on different neurobiological mechanisms. In particular, a hypersensitivity of the hypothalamic-pituitary-adrenal axis leading to an excess of cortisol in blood and a deficit in monoaminergic neurotransmission have been associated with mood disorders. In keeping with these mechanisms, currently available antidepressant drugs act by increasing the extracellular levels of monoamines in the synaptic cleft. Since the discovery of the rapid and long-lasting antidepressant effects of ketamine, an NMDA receptor antagonist, a growing attention in psychiatry is paid to the pharmacological tools able to attenuate glutamatergic neurotransmission. Astrocytes play an important role in the excitatory/inhibitory balance of the central nervous system through the regulation of glutamate reuptake and secretion. Interestingly, the release of this excitatory amino acid is controlled, at least in part, by plasma membrane proteins (i.e. connexins) that cluster together to form gap junctions or hemichannels. Preclinical evidence suggests that these functional entities play a critical role in emotional behaviour. After a brief overview of the literature on mood disorders and related treatments, this review describes the role of astrocytes and connexins in glutamatergic neurotransmission and major depression. Moreover, we highlight the arguments supporting the therapeutic potential of connexins blockers but also the practical difficulties to target the hemichannels while maintaining gap junctions intact.


TITLE: Rôle des connexines astrocytaires dans la régulation des taux extracellulaires de glutamate : implication pour le traitement des épisodes dépressifs majeurs. ABSTRACT: La dépression majeure est une pathologie psychiatrique reposant sur différents mécanismes neurobiologiques. Parmi ces mécanismes, on trouve une hypersensibilité de l'axe hypothalamo-hypophyso-surrénalien associée à un excès de cortisol dans le sang et un déficit de neurotransmission monoaminergique. Ainsi, l'efficacité thérapeutique des antidépresseurs actuels repose sur leur capacité à augmenter les taux extracellulaires de monoamines dans la fente synaptique. Depuis la découverte des effets antidépresseurs rapides et durables de la kétamine, un antagoniste des récepteurs NMDA, un intérêt croissant est porté sur les moyens pharmacologiques atténuant l'action du glutamate pour traiter la dépression majeure. Les astrocytes jouent un rôle prépondérant dans la balance excitation/inhibition du système nerveux central en régulant la recapture et la sécrétion du glutamate. De manière intéressante, la libération de cet acide aminé excitateur est contrôlée, du moins en partie, par des canaux membranaires regroupés au niveau de jonctions intercellulaires de type « gap ¼ ou d'hémicanaux formés par les connexines 30 et 43. Les données précliniques suggèrent que ces deux entités fonctionnelles ont des effets sur les comportements émotionnels dans différents modèles murins de dépression. Après un bref rappel sur les troubles de l'humeur et leurs traitements, cette revue de la littérature décrit le rôle des astrocytes et des connexines dans la neurotransmission glutamatergique et la dépression majeure. Les arguments avancés soulignent l'intérêt thérapeutique potentiel du blocage des connexines astrocytaires mais aussi les difficultés pratiques à cibler la fonction hémicanal sans impacter la fonction « gap ¼.


Asunto(s)
Astrocitos , Conexinas , Trastorno Depresivo Mayor , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Antidepresivos/uso terapéutico , Astrocitos/metabolismo , Conexinas/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Ácido Glutámico/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Sinapsis , Transmisión Sináptica/efectos de los fármacos
17.
Elife ; 92020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33016258

RESUMEN

SNORD115 has been proposed to promote the activity of serotonin (HTR2C) receptor via its ability to base pair with its pre-mRNA and regulate alternative RNA splicing and/or A-to-I RNA editing. Because SNORD115 genes are deleted in most patients with the Prader-Willi syndrome (PWS), diminished HTR2C receptor activity could contribute to the impaired emotional response and/or compulsive overeating characteristic of this disease. In order to test this appealing but never demonstrated hypothesis in vivo, we created a CRISPR/Cas9-mediated Snord115 knockout mouse. Surprisingly, we uncovered only modest region-specific alterations in Htr2c RNA editing profiles, while Htr2c alternative RNA splicing was unchanged. These subtle changes, whose functional relevance remains uncertain, were not accompanied by any discernible defects in anxio-depressive-like phenotypes. Energy balance and eating behavior were also normal, even after exposure to high-fat diet. Our study raises questions concerning the physiological role of SNORD115, notably its involvement in behavioural disturbance associated with PWS.


Asunto(s)
Emociones , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/fisiología , ARN Nucleolar Pequeño/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Conducta Animal , Sistemas CRISPR-Cas , Dieta Alta en Grasa , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/genética , Receptor de Serotonina 5-HT2C/genética
18.
Front Neurosci ; 14: 563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612499

RESUMEN

Donepezil (DPZ) is an acetylcholinesterase inhibitor used in Alzheimer's disease to restore cognitive functions but is endowed with limited efficacy. Recent studies pointed out the implication of astroglial networks in cognitive processes, notably via astrocyte connexins (Cxs), proteins involved in gap junction intercellular communications. Hence, we investigated the impact on cognition of pharmacological or genetic modulations of those astrocyte Cxs during DPZ challenge in two rodent models of Alzheimer's disease-like memory deficits. We demonstrated that the Cx modulator mefloquine (MEF) significantly enhanced the procognitive effect of DPZ in both models. In parallel, we determined that MEF potentiated DPZ-induced release of acetylcholine in hippocampus. Finally, local genetic silencing of astrocyte Cxs in the hippocampus was also found to enhance the procognitive effect of DPZ, pointing out the importance of Cx-dependent astrocyte networks in memory processes.

19.
Acta Physiol (Oxf) ; 229(1): e13440, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31925934

RESUMEN

AIM: Astroglial connexins (Cxs) 30 and 43 are engaged in gap junction and hemichannel activities. Evidence suggests that these functional entities contribute to regulating neurotransmission, thereby influencing brain functions. In particular, preclinical and clinical findings highlight a role of Cx43 in animal models of depression. However, the role of these proteins in response to currently available psychotropic drugs is still unknown. METHODS: To investigate this, we evaluated the behavioural effects of the genetic and pharmacological inactivation of Cx43 on the antidepressant- and anxiolytic-like activities of the selective serotonin reuptake inhibitor fluoxetine and the benzodiazepine diazepam, respectively. RESULTS: A single administration of fluoxetine (18 mg/kg; i.p.) produced a higher increase in hippocampal extracellular serotonin levels, and a greater antidepressant-like effect in the tail suspension test in Cx43 knock-down (KD) mice bred on a C57BL/6 background compared to their wild-type littermates. Similarly, in outbred Swiss wild-type mice, the intra-hippocampal injection of a shRNA-Cx43 or the acute systemic injection of the Cxs inhibitor carbenoxolone (CBX: 10 mg/kg; i.p.) potentiated the antidepressant-like effects of fluoxetine. Evaluating the effects of such strategies on diazepam (0.5 mg/kg; i.p.), the results indicate that Cx43 KD mice or wild-types injected with a shRNA-Cx43 in the amygdala, but not in the hippocampus, attenuated the anxiolytic-like effects of this benzodiazepine in the elevated plus maze. The chronic systemic administration of CBX mimicked the latter observations. CONCLUSION: Collectively, these data pave the way to the development of potentiating strategies in the field of psychiatry based on the modulation of astroglial Cx43.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Astrocitos/efectos de los fármacos , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Animales , Astrocitos/metabolismo , Benzodiazepinas/farmacología , Diazepam/farmacología , Fluoxetina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
20.
Biol Psychiatry ; 87(6): 514-525, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31623825

RESUMEN

BACKGROUND: Activation of serotonin (5-HT) type 4 receptors (5-HT4Rs) has been shown to have anxiolytic effects in a variety of animal models. Characterizing the circuits responsible for these effects should offer insights into new approaches to treat anxiety. METHODS: We evaluated whether acute 5-HT4R activation in glutamatergic axon terminals arising from the medial prefrontal cortex (mPFC) to the dorsal raphe nucleus (DRN) induced fast anxiolytic effects. Anxiolytic effects of an acute systemic administration (1.5 mg/kg, intraperitoneally) or intra-mPFC infusion with the 5-HT4R agonist, RS67333 (0.5 µg/side), were examined in mice. To provide evidence that anxiolytic effects of RS67333 recruited an mPFC-DRN neural circuit, in vivo recordings of firing rate of DRN 5-HT neurons, cerebral 5-HT depletion, and optogenetic activation and silencing were performed. RESULTS: Acute systemic administration and intra-mPFC infusion of RS67333 produced fast anxiolytic effects and increased DRN 5-HT cell firing. Serotonin depletion prevented anxiolytic effects induced by mPFC infusion of RS67333. Surprisingly the anxiolytic effects of mPFC infusion diazepam (1.5 µg/side) were also blocked by 5-HT depletion. Optogenetically activating mPFC terminals targeting the DRN reduced anxiety, whereas silencing this circuit blocked RS67333 and diazepam mPFC infusion-induced anxiolytic effects. Finally, anxiolytic effects induced by an acute systemic RS67333 or diazepam administration were partially blocked after optogenetically inhibiting cortical glutamatergic terminals in the DRN. CONCLUSIONS: Our findings suggest that activating 5-HT4R acutely in the mPFC or targeting mPFC pyramidal cell terminals in the DRN might constitute a strategy to produce a fast anxiolytic response.


Asunto(s)
Ansiolíticos , Núcleo Dorsal del Rafe , Compuestos de Anilina , Animales , Ansiolíticos/farmacología , Benzodiazepinas , Diazepam/farmacología , Ratones , Piperidinas , Corteza Prefrontal , Serotonina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...