Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur Radiol Exp ; 7(1): 61, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833469

RESUMEN

BACKGROUND: The corpus callosum (CC) is a key brain structure. In children with neurodevelopmental delay, we compared standard qualitative radiological assessments with an automatic quantitative tool. METHODS: We prospectively enrolled 73 children (46 males, 63.0%) with neurodevelopmental delay at single university hospital between September 2020 and September 2022. All of them underwent 1.5-T brain magnetic resonance imaging (MRI) including a magnetization-prepared 2 rapid acquisition gradient echoes - MP2RAGE sequence. Two radiologists blindly reviewed the images to classify qualitatively the CC into normal, hypoplasic, hyperplasic, and/or dysgenetic classes. An automatic tool (QuantiFIRE) was used to provide brain volumetry and T1 relaxometry automatically as well as deviations of those parameters compared with a healthy age-matched cohort. The MRI reference standard for CC volumetry was based on the Garel et al. study. Cohen κ statistics was used for interrater agreement. The radiologists and QuantiFIRE's diagnostic accuracy were compared with the reference standard using the Delong test. RESULTS: The CC was normal in 42 cases (57.5%), hypoplastic in 20 cases (27.4%), and hypertrophic in 11 cases (15.1%). T1 relaxometry values were abnormal in 26 children (35.6%); either abnormally high (18 cases, 24.6%) or low (8 cases, 11.0%). The interrater Cohen κ coefficient was 0.91. The diagnostic accuracy of the QuantiFIRE prototype was higher than that of the radiologists for hypoplastic and normal CC (p = 0.003 for both subgroups, Delong test). CONCLUSIONS: An automated volumetric and relaxometric assessment can assist the evaluation of brain structure such as the CC, particularly in the case of subtle abnormalities. RELEVANCE STATEMENT: Automated brain MRI segmentation combined with statistical comparison to normal volume and T1 relaxometry values can be a useful diagnostic support tool for radiologists. KEY POINTS: • Corpus callosum abnormality detection is challenging but clinically relevant. • Automated quantitative volumetric analysis had a higher diagnostic accuracy than that of visual appreciation of radiologists. • Quantitative T1 relaxometric analysis might help characterizing corpus callosum better.


Asunto(s)
Cuerpo Calloso , Imagen por Resonancia Magnética , Masculino , Humanos , Niño , Cuerpo Calloso/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo
2.
Eur J Pediatr ; 180(11): 3307-3315, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33993400

RESUMEN

Hydrocortisone is used in preterm infants. However, early disruption of growth velocities was observed in infants exposed to hydrocortisone. This retrospective study aimed to explore the postnatal brain growth of extremely preterm infants requiring hydrocortisone treatment as well as its association with perinatal factors. Extremely preterm infants exposed to hydrocortisone from 2011 to 2016 who survived up to 12 months were included. Each of them was matched with two infants not treated with hydrocortisone exhibiting similar gestational ages and nearly similar birth head circumferences. The outcome variables were brain tissue areas on MRIs performed at term-equivalent age and postnatal head circumference growth up to a corrected age of 12 months. Univariate and multiple regression analyses were performed. Infants treated with hydrocortisone (n=20) were matched with 40 infants not exposed to hydrocortisone. The infants exposed to hydrocortisone exhibited a lower birth weight (p=0.04) and a longer duration of mechanical ventilation (p<0.0001). Infants treated with hydrocortisone exhibited a smaller basal ganglia/thalamus area (p=0.04) at term-equivalent age and a smaller head circumference at a corrected age of 12 months (p=0.003). However, the basal ganglia/thalamus area and the postnatal brain growth were independently associated with the duration of mechanical ventilation and not with hydrocortisone. Interestingly, a significant interaction between hydrocortisone and sex was observed (p=0.04).Conclusion: This study supports previous data that indicated no obvious impact of hydrocortisone on brain growth and highlights the relationship between the severity of the neonatal course and postnatal brain growth in extremely preterm infants. What is Known: • Postnatal hydrocortisone disrupts transiently growth velocities including the head circumference growth. • Postnatal hydrocortisone has less impact on neurodevelopment than dexamethasone. What is New: • Hydrocortisone prescribed for infants in the most severe conditions did not show independent effect on brain growth up to the corrected age of 12 months. However, a different effect of hydrocortisone according to sex can't be excluded and needs further explorations. • Perinatal factors as birth weight and duration of mechanical ventilation were determinant for the subsequent brain growth.


Asunto(s)
Displasia Broncopulmonar , Hidrocortisona , Antiinflamatorios , Encéfalo/diagnóstico por imagen , Edad Gestacional , Humanos , Lactante , Recien Nacido Extremadamente Prematuro , Recién Nacido , Respiración Artificial , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA