Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 11(12): e1005713, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26658939

RESUMEN

Psychostimulant addiction is a heritable substance use disorder; however its genetic basis is almost entirely unknown. Quantitative trait locus (QTL) mapping in mice offers a complementary approach to human genome-wide association studies and can facilitate environment control, statistical power, novel gene discovery, and neurobiological mechanisms. We used interval-specific congenic mouse lines carrying various segments of chromosome 11 from the DBA/2J strain on an isogenic C57BL/6J background to positionally clone a 206 kb QTL (50,185,512-50,391,845 bp) that was causally associated with a reduction in the locomotor stimulant response to methamphetamine (2 mg/kg, i.p.; DBA/2J < C57BL/6J)-a non-contingent, drug-induced behavior that is associated with stimulation of the dopaminergic reward circuitry. This chromosomal region contained only two protein coding genes-heterogeneous nuclear ribonucleoprotein, H1 (Hnrnph1) and RUN and FYVE domain-containing 1 (Rufy1). Transcriptome analysis via mRNA sequencing in the striatum implicated a neurobiological mechanism involving a reduction in mesolimbic innervation and striatal neurotransmission. For instance, Nr4a2 (nuclear receptor subfamily 4, group A, member 2), a transcription factor crucial for midbrain dopaminergic neuron development, exhibited a 2.1-fold decrease in expression (DBA/2J < C57BL/6J; p 4.2 x 10-15). Transcription activator-like effector nucleases (TALENs)-mediated introduction of frameshift deletions in the first coding exon of Hnrnph1, but not Rufy1, recapitulated the reduced methamphetamine behavioral response, thus identifying Hnrnph1 as a quantitative trait gene for methamphetamine sensitivity. These results define a novel contribution of Hnrnph1 to neurobehavioral dysfunction associated with dopaminergic neurotransmission. These findings could have implications for understanding the genetic basis of methamphetamine addiction in humans and the development of novel therapeutics for prevention and treatment of substance abuse and possibly other psychiatric disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Actividad Motora/genética , Sitios de Carácter Cuantitativo/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Mapeo Cromosómico , Neuronas Dopaminérgicas/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Masculino , Metanfetamina/administración & dosificación , Ratones , Actividad Motora/efectos de los fármacos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN Mensajero/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
2.
Addict Biol ; 19(4): 552-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23231598

RESUMEN

The rewarding property of opioids likely contributes to their abuse potential. Therefore, determining the genetic basis of opioid reward could aid in understanding the neurobiological mechanisms of opioid addiction, provided that it is a heritable trait. Here, we characterized the rewarding property of the widely abused prescription opioid oxycodone (OXY) in the conditioned place preference (CPP) assay using LG/J and SM/J parental inbred mouse strains and 17 parent-offspring families of a LG/J × SM/J F47 /F48 advanced intercross line (AIL). Following OXY training (5 mg/kg, i.p.), SM/J mice and AIL mice, but not LG/J mice, showed an increase in preference for the OXY-paired side, suggesting a genetic basis for OXY-CPP. SM/J mice showed greater locomotor activity than LG/J mice in response to both saline and OXY. LG/J, SM/J, and AIL mice all exhibited robust OXY-induced locomotor sensitization. Narrow-sense heritability (h(2) ) estimates of the phenotypes using linear regression and maximum likelihood estimation showed good agreement (r = 0.91). OXY-CPP was clearly not a heritable trait whereas drug-free- and OXY-induced locomotor activity and sensitization were significantly and sometimes highly heritable (h(2) = 0.30-0.84). Interestingly, the number of transitions between the saline- and OXY-paired sides emerged as a reliably heritable trait following OXY training (h(2) = 0.46-0.66) and could represent a genetic component of drug-seeking behavior. Thus, although OXY-CPP does not appear to be amenable to genome-wide quantitative trait locus mapping, this protocol will be useful for mapping other traits potentially relevant to opioid abuse.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Conducta Animal/efectos de los fármacos , Predisposición Genética a la Enfermedad/genética , Trastornos Relacionados con Opioides/genética , Oxicodona/administración & dosificación , Recompensa , Animales , Condicionamiento Operante/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Femenino , Funciones de Verosimilitud , Masculino , Ratones , Ratones Endogámicos , Actividad Motora/efectos de los fármacos , Trastornos Relacionados con Opioides/psicología , Fenotipo , Cloruro de Sodio/administración & dosificación
3.
Front Genet ; 3: 126, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22798962

RESUMEN

The conditioned place preference (CPP) test is frequently used to evaluate the rewarding properties of drugs of abuse in mice. Despite its widespread use in transgenic and knockout experiments, there are few forward genetic studies using CPP to identify novel genes contributing to drug reward. In this study, we tested LG/J and SM/J inbred strains and the parents/offspring of 10 families of an F(45)/F(46) advanced intercross line (AIL) for methamphetamine-induced CPP (MA-CPP) once per week over 2 weeks. Both LG/J and SM/J mice exhibited significant MA-CPP that was not significantly different between the two strains. Furthermore, LG/J mice showed significantly less acute MA-induced locomotor activity as well as locomotor sensitization following subsequent MA injections. AIL mice (N = 105) segregating LG/J and SM/J alleles also demonstrated significant MA-CPP that was equal in magnitude between the first and second week of training. Importantly, MA-CPP in AIL mice did not correlate with drug-free or MA-induced locomotor activity, indicating that MA-CPP was not confounded by test session activity and implying that MA-CPP is genetically distinct from acute psychomotor sensitivity. We estimated the heritability of MA-CPP and locomotor phenotypes using midparent-offspring regression and maximum likelihood estimates derived from the kinship coefficients of the AIL pedigree. Heritability estimates of MA-CPP were low (0-0.21) and variable (SE = 0-0.33) which reflected our poor power to estimate heritability using only 10 midparent-offspring observations. In sum, we established a short-term protocol for MA-CPP in AIL mice that could reveal LG/J and SM/J alleles important for MA reward. The use of highly recombinant genetic populations like AIL should facilitate the identification of these genes and may have implications for understanding psychostimulant abuse in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...