Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Haematologica ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934080

RESUMEN

Chromosomal translocations in non-Hodgkin lymphoma (NHL) result in activation of oncogenes by placing them under the regulation of immunoglobulin heavy chain (IGH) super-enhancers. Aberrant expression of translocated oncogenes induced by enhancer activity can contribute to lymphomagenesis. The role of the IGH enhancers in normal B-cell development is well established, but knowledge regarding the precise mechanisms of their involvement in control of the translocated oncogenes is limited. The goal of this project was to define the critical regions in the IGH regulatory elements and identify enhancer RNAs (eRNA). We designed a sgRNA library densely covering the IGH enhancers and performed tiling CRISPR interference screens in three NHL cell lines. This revealed three regions crucial for NHL cell growth. With chromatin-enriched RNA-Seq we showed transcription from the core enhancer regions and subsequently validated expression of the eRNAs in a panel of NHL cell lines and tissue samples. Inhibition of the essential IGH enhancer regions decreased expression of eRNAs and translocated oncogenes in several NHL cell lines. The observed expression and growth patterns were consistent with the breakpoints in the IGH locus. Moreover, targeting the Eµ enhancer resulted in loss of B-cell receptor expression. In a Burkitt lymphoma cell line, MYC overexpression partially rescued the phenotype induced by IGH enhancer inhibition. Our results indicated the most critical regions in the IGH enhancers and provided new insights into the current understanding of the role of IGH enhancers in B-cell NHL. As such, this study forms a basis for development of potential therapeutic approaches.

2.
BMC Immunol ; 25(1): 13, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331731

RESUMEN

The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Humanos , Mutación , Receptores de Antígenos de Linfocitos B/genética , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Eur J Immunol ; 53(11): e2350562, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597325

RESUMEN

Levamisole (LMS) is a small molecule used in the treatment of idiopathic nephrotic syndrome (INS). The pathogenesis of INS remains unknown, but evidence points toward an immunological basis of the disease. Recently, LMS has been shown to increase the relapse-free survival in INS patients. While LMS has been hypothesized to exert an immunomodulatory effect, its mechanism of action remains unknown. Here, we show that LMS decreased activation and proliferation of human T cells. T-cell activation-associated cytokines such as IL-2, TNF-α, and IFN-γ were reduced upon LMS treatment, whereas IL-4 and IL-13 were increased. Gene expression profiling confirmed that the suppressive effects of LMS as genes involved in cell cycle progression were downregulated. Furthermore, genes associated with p53 activation were upregulated by LMS. In agreement, LMS treatment resulted in p53 phosphorylation and increased expression of the p53 target gene FAS. Accordingly, LMS sensitized activated T cells for Fas-mediated apoptosis. LMS treatment resulted in a mid-S phase cell cycle arrest accompanied by γH2AX-foci formation and phosphorylation of CHK1. Our findings indicate that LMS acts as an immunosuppressive drug that directly affects the activation and proliferation of human T cells by induction of DNA damage and the activation of a p53-dependent DNA damage response.


Asunto(s)
Levamisol , Proteína p53 Supresora de Tumor , Humanos , Levamisol/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , División Celular , Apoptosis , Linfocitos T , Daño del ADN
4.
Front Immunol ; 14: 1123968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138881

RESUMEN

The adaptive immune system has the extraordinary ability to produce a broad range of immunoglobulins that can bind a wide variety of antigens. During adaptive immune responses, activated B cells duplicate and undergo somatic hypermutation in their B-cell receptor (BCR) genes, resulting in clonal families of diversified B cells that can be related back to a common ancestor. Advances in high-throughput sequencing technologies have enabled the high-throughput characterization of B-cell repertoires, however, the accurate identification of clonally related BCR sequences remains a major challenge. In this study, we compare three different clone identification methods on both simulated and experimental data, and investigate their impact on the characterization of B-cell diversity. We observe that different methods lead to different clonal definitions, which affects the quantification of clonal diversity in repertoire data. Our analyses show that direct comparisons between clonal clusterings and clonal diversity of different repertoires should be avoided if different clone identification methods were used to define the clones. Despite this variability, the diversity indices inferred from the repertoires' clonal characterization across samples show similar patterns of variation regardless of the clonal identification method used. We find the Shannon entropy to be the most robust in terms of the variability of diversity rank across samples. Our analysis also suggests that the traditional germline gene alignment-based method for clonal identification remains the most accurate when the complete information about the sequence is known, but that alignment-free methods may be preferred for shorter sequencing read lengths. We make our implementation freely available as a Python library cdiversity.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Células Clonales , Inmunoglobulinas/genética , Biblioteca de Genes
5.
NPJ Syst Biol Appl ; 9(1): 8, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927990

RESUMEN

Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.


Asunto(s)
Linfocitos B , Centro Germinal , Receptores de Antígenos de Linfocitos B/genética
6.
Haematologica ; 108(3): 797-810, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226498

RESUMEN

BCL-2 family proteins are frequently aberrantly expressed in mantle cell lymphoma (MCL). Recently, the BCL-2-specific inhibitor venetoclax has been approved by the US Food and Drug Administration for chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). In MCL, venetoclax has shown promising efficacy in early clinical trials; however, a significant subset of patients is resistant. By conducting a kinome-centered CRISPR-Cas9 knockout sensitizer screen, we identified casein kinase 2 (CK2) as a major regulator of venetoclax resistance in MCL. Interestingly, CK2 is over-expressed in MCL and high CK2 expression is associated with poor patient survival. Targeting of CK2, either by inducible short hairpin RNA (shRNA)-mediated knockdown of CK2 or by the CK2-inhibitor silmitasertib, did not affect cell viability by itself, but strongly synergized with venetoclax in both MCL cell lines and primary samples, also if combined with ibrutinib. Furthermore, targeting of CK2 reduced MCL-1 levels, which involved impaired MCL-1 translation by inhibition of eIF4F complex assembly, without affecting BCL-2 and BCL-XL expression. Combined, this results in enhanced BCL-2 dependence and, consequently, venetoclax sensitization. In cocultures, targeting of CK2 overcame stroma-mediated venetoclax resistance of MCL cells. Taken together, our findings indicate that targeting of CK2 sensitizes MCL cells to venetoclax through downregulation of MCL-1. These novel insights provide a strong rationale for combining venetoclax with CK2 inhibition as therapeutic strategy for MCL patients.


Asunto(s)
Antineoplásicos , Linfoma de Células del Manto , Humanos , Adulto , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Regulación hacia Abajo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico
7.
Mol Oncol ; 17(2): 284-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36400430

RESUMEN

Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM.


Asunto(s)
Mieloma Múltiple , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Humanos , Ratones , Línea Celular , ADN/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Blood Adv ; 7(9): 1697-1712, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36322819

RESUMEN

Metabolic alterations are important cancer-associated features that allow cancer cell transformation and survival under stress conditions. Multiple myeloma (MM) plasma cells show increased glycolysis and oxidative phosphorylation (OXPHOS), which are characteristics associated with recurrent genetic aberrations that drive the proliferation and survival of MM cells. The protein kinase B/AKT acts as a central node in cellular metabolism and is constitutively active in MM cells. Despite the known role of AKT in modulating cellular metabolism, little is known about the downstream factors of AKT that control the metabolic adaptability of MM cells. Here, we demonstrate that negative regulation of the forkhead box O (FOXO) transcription factors (TFs) by AKT is crucial to prevent the metabolic shutdown in MM cells, thus contributing to their metabolic adaptability. Our results demonstrate that the expression of several key metabolic genes involved in glycolysis, the tricarboxylic acid (TCA) cycle, and OXPHOS are repressed by FOXO TFs. Moreover, the FOXO-dependent repression of glycolysis- and TCA-associated genes correlates with a favorable prognosis in a large cohort of patients with MM. Our data suggest that repression of FOXO by AKT is essential to sustain glycolysis and the TCA cycle activity in MM cells and, as such, predicts patient survival.


Asunto(s)
Mieloma Múltiple , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mieloma Múltiple/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Fosforilación Oxidativa
9.
Front Immunol ; 13: 986863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700204

RESUMEN

The development and differentiation of B cells is intimately linked to cell proliferation and the generation of diverse immunoglobulin gene (Ig) repertoires. The ubiquitin E3 ligase HUWE1 controls proliferation, DNA damage responses, and DNA repair, including the base excision repair (BER) pathway. These processes are of crucial importance for B-cell development in the bone marrow, and the germinal center (GC) response, which results in the clonal expansion and differentiation of B cells expressing high affinity immunoglobulins. Here, we re-examined the role of HUWE1 in B-cell proliferation and Ig gene diversification, focusing on its involvement in somatic hypermutation (SHM) and class switch recombination (CSR). B-cell-specific deletion of Huwe1 resulted in impaired development, differentiation and maturation of B cells in the bone marrow and peripheral lymphoid organs. HUWE1 deficiency diminished SHM and CSR by impairing B-cell proliferation and AID expression upon activation in vitro and in vivo, and was unrelated to the HUWE1-dependent regulation of the BER pathway. Interestingly, we found that HUWE1-deficient B cells showed increased mRNA expression of Myc target genes upon in vitro activation despite diminished proliferation. Our results confirm that the E3 ligase HUWE1 is an important contributor in coordinating the rapid transition of antigen naïve, resting B cells into antigen-activated B cells and regulates mutagenic processes in B cells by controlling AID expression and the post-transcriptional output of Myc target genes.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina , Cambio de Clase de Inmunoglobulina/genética , Linfocitos B , Reparación del ADN , Diferenciación Celular/genética
10.
Front Immunol ; 12: 716240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484219

RESUMEN

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.


Asunto(s)
Antígenos/inmunología , División Celular Asimétrica/genética , Centro Germinal/inmunología , Centro Germinal/metabolismo , Células B de Memoria/inmunología , Células Plasmáticas/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Biomarcadores , Diferenciación Celular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Activación de Linfocitos , Células B de Memoria/metabolismo , Modelos Biológicos , Células Plasmáticas/metabolismo
12.
Cancers (Basel) ; 13(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494394

RESUMEN

Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.

13.
Blood Adv ; 4(17): 4151-4164, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32898245

RESUMEN

The phosphatidylinositide-3 kinases and the downstream mediator AKT drive survival and proliferation of multiple myeloma (MM) cells. AKT signaling is active in MM and has pleiotropic effects; however, the key molecular aspects of AKT dependency in MM are not fully clear. Among the various downstream AKT targets are the Forkhead box O (FOXO) transcription factors (TFs) and glycogen synthase kinase 3 (GSK3), which are negatively regulated by AKT signaling. Here we show that abrogation of AKT signaling in MM cells provokes cell death and cell cycle arrest, which crucially depends on both FOXO TFs and GSK3. Based on gene expression profiling, we defined a FOXO-repressed gene set that has prognostic significance in a large cohort of patients with MM, indicating that AKT-mediated gene activation is associated with inferior overall survival. We further show that AKT signaling stabilizes the antiapoptotic myeloid cell leukemia 1 (MCL1) protein by inhibiting FOXO- and GSK3-mediated MCL1 turnover. In concordance, abrogation of AKT signaling greatly sensitized MM cells for an MCL1-targeting BH3-mimetic, which is currently in clinical development. Taken together, our results indicate that AKT activity is required to restrain the tumor-suppressive functions of FOXO and GSK3, thereby stabilizing the antiapoptotic protein MCL1 in MM. These novel insights into the role of AKT in MM pathogenesis and MCL1 regulation provide opportunities to improve targeted therapy for patients with MM.


Asunto(s)
Factores de Transcripción Forkhead , Mieloma Múltiple , Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3 , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
14.
Front Immunol ; 11: 1084, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547565

RESUMEN

The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000-30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.


Asunto(s)
Linfocitos B/inmunología , Reparación del ADN/inmunología , ADN/genética , Animales , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Sistema Inmunológico , Cambio de Clase de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina
15.
Arthritis Rheumatol ; 72(8): 1330-1340, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182401

RESUMEN

OBJECTIVE: Patients with SjÓ§gren's syndrome (SS) have an increased risk of developing malignant B cell lymphomas, particularly mucosa-associated lymphoid tissue (MALT)-type lymphomas. We have previously shown that a predominant proportion of patients with SS-associated salivary gland MALT lymphoma express somatically hypermutated IgM with strong amino acid sequence homology with stereotypic rheumatoid factors (RFs). The present study was undertaken in a larger cohort of patients with SS-associated MALT lymphoma to more firmly assess the frequency of RF reactivity and the significance of somatic IGV-region mutations for RF reactivity. METHODS: B cell antigen receptors (BCRs) of 16 patients with SS-associated salivary gland MALT lymphoma were analyzed. Soluble recombinant IgM was produced of 12 MALT lymphoma samples, including 1 MALT lymphoma sample that expressed an IgM antibody fitting in a novel IGHV3-30-encoded stereotypic IGHV subset. For 4 of the 12 IgM antibodies from MALT lymphoma samples, the somatically mutated IGHV and IGKV gene sequences were reverted to germline configurations. Their RF activity and binding affinity were determined by enzyme-linked immunosorbent assay and surface plasmon resonance, respectively. RESULTS: Nine (75%) of the 12 IgM antibodies identified in patients with SS-associated salivary gland MALT lymphoma displayed strong monoreactive RF activity. Reversion of the IGHV and IGKV mutations to germline configuration resulted in RF affinities for IgG that were significantly lower for 3 of the 4 somatically mutated IgM antibodies. In stereotypic IGHV3-7/IGKV3-15-encoded RFs, a recurrent replacement mutation in the IGKV3-15-third complementarity-determining region was found to play a pivotal role in the affinity for IgG-Fc. CONCLUSION: A majority of patients with SS-associated salivary gland MALT lymphoma express somatically mutated BCRs that are selected for monoreactive, high-affinity binding of IgG-Fc. These data underscore the notion that soluble IgG, most likely in immune complexes in inflamed tissues, is the principal autoantigen in the pathogenesis of a variety of B cell lymphomas, particularly SS-associated MALT lymphomas.


Asunto(s)
Inmunoglobulina G/inmunología , Linfoma de Células B de la Zona Marginal/genética , Mutación/inmunología , Factor Reumatoide/inmunología , Síndrome de Sjögren/genética , Humanos , Linfoma de Células B de la Zona Marginal/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Glándulas Salivales/inmunología
16.
Front Immunol ; 11: 620716, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613551

RESUMEN

Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.


Asunto(s)
Linfocitos B/inmunología , Antígenos CD40/inmunología , Simulación por Computador , Centro Germinal/inmunología , Memoria Inmunológica/inmunología , Linfopoyesis/inmunología , Modelos Inmunológicos , Células Plasmáticas/inmunología , Células T Auxiliares Foliculares/inmunología , División Celular Asimétrica , Linfocitos B/citología , Linaje de la Célula , Redes Reguladoras de Genes , Centro Germinal/citología , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/fisiología , Células Plasmáticas/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/fisiología , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/fisiología , Transducción de Señal , Factores de Tiempo
17.
Cell Cycle ; 18(18): 2307-2322, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31349760

RESUMEN

The BCR-ABL1 fusion gene is the driver oncogene in chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). The introduction of tyrosine kinase inhibitors (TKIs) targeting the ABL kinase (such as imatinib) has dramatically improved survival of CML and Ph+ ALL patients. However, primary and acquired resistance to TKIs remains a clinical challenge. Ph+ leukemia patients who achieve a complete cytogenetic (CCR) or deep molecular response (MR) (≥4.5log reduction in BCR-ABL1 transcripts) represent long-term survivors. Thus, the fast and early eradication of leukemic cells predicts MR and is the prime clinical goal for these patients. We show here that the first-in-class inhibitor of the Nedd8-activating enzyme (NAE1) MLN4924 effectively induced caspase-dependent apoptosis in Ph+ leukemia cells, and sensitized leukemic cells for ABL tyrosine kinase inhibitors (TKI) and hydroxyurea (HU). We demonstrate that MLN4924 induced DNA damage in Ph+ leukemia cells by provoking the activation of an intra S-phase checkpoint, which was enhanced by imatinib co-treatment. The combination of MLN4924 and imatinib furthermore triggered a dramatic shift in the expression of MCL1 and NOXA. Our data offers a clear rationale to explore the clinical activity of MLN4924 (alone and in combination with ABL TKI) in Ph+ leukemia patients.


Asunto(s)
Ciclopentanos/farmacología , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Quimioterapia Combinada , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
Int J Mol Sci ; 18(9)2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28867784

RESUMEN

Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.


Asunto(s)
Reparación del ADN/genética , Inmunidad Humoral/genética , Hipermutación Somática de Inmunoglobulina/genética , Recombinación V(D)J/genética , Linfocitos B/inmunología , Citidina Desaminasa/genética , Daño del ADN/genética , Daño del ADN/inmunología , Reparación del ADN/inmunología , Reordenamiento Génico/genética , Reordenamiento Génico/inmunología , Humanos , Mutagénesis/genética , Mutagénesis/inmunología , Hipermutación Somática de Inmunoglobulina/inmunología , Linfocitos T/inmunología , Recombinación V(D)J/inmunología
19.
J Vis Exp ; (124)2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28654064

RESUMEN

The DNA damage response orchestrates the repair of DNA lesions that occur spontaneously, are caused by genotoxic stress, or appear in the context of programmed DNA breaks in lymphocytes. The Ataxia-Telangiectasia Mutated kinase (ATM), ATM- and Rad3-Related kinase (ATR) and the catalytic subunit of DNA-dependent Protein Kinase (DNA-PKcs) are among the first that are activated upon induction of DNA damage, and are central regulators of a network that controls DNA repair, apoptosis and cell survival. As part of a tumor-suppressive pathway, ATM and ATR activate p53 through phosphorylation, thereby regulating the transcriptional activity of p53. DNA damage also results in the formation of so-called ionizing radiation-induced foci (IRIF) that represent complexes of DNA damage sensor and repair proteins that accumulate at the sites of DNA damage, which are visualized by fluorescence microscopy. Co-localization of proteins in IRIFs, however, does not necessarily imply direct protein-protein interactions, as the resolution of fluorescence microscopy is limited. In situ Proximity Ligation Assay (PLA) is a novel technique that allows the direct visualization of protein-protein interactions in cells and tissues with unprecedented specificity and sensitivity. This technique is based on the spatial proximity of specific antibodies binding to the proteins of interest. When the interrogated proteins are within ~40 nm an amplification reaction is triggered by oligonucleotides that are conjugated to the antibodies, and the amplification product is visualized by fluorescent labeling, yielding a signal that corresponds to the subcellular location of the interacting proteins. Using the established functional interaction between ATM and p53 as an example, it is demonstrated here how PLA can be used in suspension cell cultures to study the direct interactions between proteins that are integral parts of the DNA damage response.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Daño del ADN , Proteína Quinasa Activada por ADN/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de Unión al ADN/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
20.
Front Immunol ; 8: 221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28321219

RESUMEN

Immunoglobulin repertoire sequencing has successfully been applied to identify expanded antigen-activated B-cell clones that play a role in the pathogenesis of immune disorders. One challenge is the selection of the Ag-specific B cells from the measured repertoire for downstream analyses. A general feature of an immune response is the expansion of specific clones resulting in a set of subclones with common ancestry varying in abundance and in the number of acquired somatic mutations. The expanded subclones are expected to have BCR affinities for the Ag higher than the affinities of the naive B cells in the background population. For these reasons, several groups successfully proceeded or suggested selecting highly abundant subclones from the repertoire to obtain the Ag-specific B cells. Given the nature of affinity maturation one would expect that abundant subclones are of high affinity but since repertoire sequencing only provides information about abundancies, this can only be verified with additional experiments, which are very labor intensive. Moreover, this would also require knowledge of the Ag, which is often not available for clinical samples. Consequently, in general we do not know if the selected highly abundant subclone(s) are also the high(est) affinity subclones. Such knowledge would likely improve the selection of relevant subclones for further characterization and Ag screening. Therefore, to gain insight in the relation between subclone abundancy and affinity, we developed a computational model that simulates affinity maturation in a single GC while tracking individual subclones in terms of abundancy and affinity. We show that the model correctly captures the overall GC dynamics, and that the amount of expansion is qualitatively comparable to expansion observed from B cells isolated from human lymph nodes. Analysis of the fraction of high- and low-affinity subclones among the unexpanded and expanded subclones reveals a limited correlation between abundancy and affinity and shows that the low abundant subclones are of highest affinity. Thus, our model suggests that selecting highly abundant subclones from repertoire sequencing experiments would not always lead to the high(est) affinity B cells. Consequently, additional or alternative selection approaches need to be applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...