Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Transl Med ; 13(616): eabj0835, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34669444

RESUMEN

Gamma delta T (γδ T) cells are among the most potent cytotoxic lymphocytes. Activating anti­butyrophilin 3A (BTN3A) antibodies prime diverse tumor cell types to be killed by Vγ9Vδ2 T cells, the predominant γδ T cell subset in peripheral circulation, by mechanisms independent of tumor antigen­major histocompatibility complex (MHC) complexes. In this report, we describe the development of a humanized monoclonal antibody, ICT01, with subnanomolar affinity for the three isoforms of BTN3A. We demonstrate that ICT01-activated Vγ9Vδ2 T cells kill multiple tumor cell lines and primary tumor cells, but not normal healthy cells, in an efficient process requiring approximately 20% target occupancy. We show that ICT01 activity is dependent on BTN3A and BTN2A but independent of the phosphoantigen (pAg)­binding B30.2 domain. ICT01 delays the growth of hematologic and solid tumor xenografts and prolongs survival of NOD/SCID/IL2rγnull (NSG) mice adoptively transferred with human Vγ9Vδ2 T cells. In single- and multiple-dose safety studies in cynomolgus macaques that received up to 100 mg/kg once weekly, ICT01 was well tolerated. With respect to pharmacodynamic endpoints, ICT01 selectively activated Vγ9Vδ2 T cells without affecting other BTN3A-expressing lymphocytes such as αß T or B cells. A first-in-human, phase 1/2a, open-label, clinical study of ICT01 was thus initiated in patients with advanced-stage solid tumors (EVICTION: NCT04243499; EudraCT: 2019-003847-31). Preliminary results show that ICT01 was well tolerated and pharmacodynamically active in the first patients. Digital pathology analysis of tumor biopsies of a patient with melanoma suggests that ICT01 may promote immune cell infiltration within the tumor microenvironment.


Asunto(s)
Activación de Linfocitos , Linfocitos T , Receptores de Antígenos de Linfocitos T gamma-delta
2.
J Virol ; 89(16): 8292-303, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041283

RESUMEN

UNLABELLED: Alphaviruses are known to possess a unique viral mRNA capping mechanism involving the viral nonstructural protein nsP1. This enzyme harbors methyltransferase (MTase) and nsP1 guanylylation (GT) activities catalyzing the transfer of the methyl group from S-adenosylmethionine (AdoMet) to the N7 position of a GTP molecule followed by the formation of an m(7)GMP-nsP1 adduct. Subsequent transfer of m(7)GMP onto the 5' end of the viral mRNA has not been demonstrated in vitro yet. Here we report the biochemical characterization of Venezuelan equine encephalitis virus (VEEV) nsP1. We have developed enzymatic assays uncoupling the different reactions steps catalyzed by nsP1. The MTase and GT reaction activities were followed using a nonhydrolyzable GTP (GIDP) substrate and an original Western blot assay using anti-m3G/m(7)G-cap monoclonal antibody, respectively. The GT reaction is stimulated by S-adenosyl-l-homocysteine (Ado-Hcy), the product of the preceding MTase reaction, and metallic ions. The covalent linking between nsP1 and m(7)GMP involves a phosphamide bond between the nucleotide and a histidine residue. Final guanylyltransfer onto RNA was observed for the first time with an alphavirus nsP1 using a 5'-diphosphate RNA oligonucleotide whose sequence corresponds to the 5' end of the viral genome. Alanine scanning mutagenesis of residues H37, H45, D63, E118, Y285, D354, R365, N369, and N375 revealed their respective roles in MT and GT reactions. Finally, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA), and ribavirin triphosphate on MTase and capping reactions were investigated, providing possible avenues for antiviral research. IMPORTANCE: Emergence or reemergence of alphaviruses represents a serious health concern, and the elucidation of their replication mechanisms is a prerequisite for the development of specific inhibitors targeting viral enzymes. In particular, alphaviruses are able, through an original reaction sequence, to add to their mRNA a cap required for their protection against cellular nucleases and initiation of viral proteins translation. In this study, the capping of a 5' diphosphate synthetic RNA mimicking the 5' end of an alphavirus mRNA was observed in vitro for the first time. The different steps for this capping are performed by the nonstructural protein 1 (nsP1). Reference compounds known to target the viral capping inhibited nsP1 enzymatic functions, highlighting the value of this enzyme in antiviral development.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/genética , Caperuzas de ARN/química , ARN Mensajero/genética , Secuencia de Aminoácidos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
3.
Virus Res ; 201: 94-100, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25725151

RESUMEN

Random transposon insertions in viral genomes can be used to reveal genomic regions important for virus replication. We used these genomic data to evaluate at the protein level the effect of such insertions on the Venezuelan Equine Encephalitis Virus nsP3 macro domain. The structural analysis showed that transposon insertions occur mainly in loops connecting the secondary structure elements. Some of the insertions leading to a temperature sensitive viral phenotype (ts) are close to the cleavage site between nsP2 and nsP3 or the ADP-ribose binding site, two important functions of the macro domain. Using four mutants mimicking the transposon insertions, we confirmed that these insertions can affect the macro domain properties without disrupting the overall structure of the protein.


Asunto(s)
Fenómenos Biofísicos , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/fisiología , Mutagénesis Insercional , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral , Modelos Moleculares , Conformación Proteica
4.
Rev. argent. ultrason ; 13(1): 20-28, mar. 2014. ilus
Artículo en Español | LILACS | ID: lil-737582

RESUMEN

La identificación y predicción de pacientes con desconexión dificultosa es de gran importancia en la práctica clínica. Existen diversos parámetros de predicción como el índice de paciente rápido y superficial (f/VT), presión inspiratoria máxima (Pimáx), presión transdiafragmática (Pdi) y volumen corriente espontáneo (VTspon). Sin embargo dichos métodos encuentran limitaciones: el carácter invasivo en el caso de la Pdi, la variabilidad de predicción como el f/VT o la necesidad de colaboración del paciente en el caso de VTspon y PImax. El uso cada vez más difundido de la Ecografía dentro de las unidades de cuidados críticos, ha demostrado ser una herramienta de gran utilidad. Es un método no invasivo que se puede realizar al pie de la cama del paciente, no requiere exposición a soluciones contrastadas, no se contraindica por inestabilidad hemodinámica. Por el contrario brinda la posibilidad de una evaluación integral del estado hemodinámico. Su uso se ha expandido hasta la evaluación de la cinética diafragmática en múltiples condiciones normales y patológicas, aporta parámetros como la amplitud, fuerza y velocidad de contracción. Dichos parámetros pueden guiar en el diagnóstico y tratamiento de pacientes con grados variables de disfunción diafragmática...


Asunto(s)
Humanos , Respiración Artificial/instrumentación , Respiración Artificial/tendencias , Respiración Artificial , Ultrasonografía
5.
Proc Natl Acad Sci U S A ; 110(51): 20503-8, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24302762

RESUMEN

Proteins containing C2 domains are the sensors for Ca(2+) and PI(4,5)P2 in a myriad of secretory pathways. Here, the use of a free-mounting system has enabled us to capture an intermediate state of Ca(2+) binding to the C2A domain of rabphilin 3A that suggests a different mechanism of ion interaction. We have also determined the structure of this domain in complex with PI(4,5)P2 and IP3 at resolutions of 1.75 and 1.9 Å, respectively, unveiling that the polybasic cluster formed by strands ß3-ß4 is involved in the interaction with the phosphoinositides. A comparative study demonstrates that the C2A domain is highly specific for PI(4,5)P2/PI(3,4,5)P3, whereas the C2B domain cannot discriminate among any of the diphosphorylated forms. Structural comparisons between C2A domains of rabphilin 3A and synaptotagmin 1 indicated the presence of a key glutamic residue in the polybasic cluster of synaptotagmin 1 that abolishes the interaction with PI(4,5)P2. Together, these results provide a structural explanation for the ability of different C2 domains to pull plasma and vesicle membranes close together in a Ca(2+)-dependent manner and reveal how this family of proteins can use subtle structural changes to modulate their sensitivity and specificity to various cellular signals.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Calcio/química , Proteínas del Tejido Nervioso/química , Fosfatidilinositol 4,5-Difosfato/química , Sinaptotagmina I/química , Proteínas de Transporte Vesicular/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografía por Rayos X , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Rabfilina-3A
6.
Biochim Biophys Acta ; 1798(6): 1212-24, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20153293

RESUMEN

We have identified a membrane-active region in the HCV NS5A protein by performing an exhaustive study of membrane rupture induced by a NS5A-derived peptide library on model membranes having different phospholipid compositions. We report the identification in NS5A of a highly membranotropic region located at the suggested membrane association domain of the protein. We report the binding and interaction with model membranes of two peptides patterned after this segment, peptides 1A and 1B, derived from the strains 1a_H77 and 1b_HC-4J respectively. We show that they insert into phospholipid membranes, interact with them, and are located in a shallow position in the membrane. The NS5A region where this segment resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex, and consequently, directly implicated in the HCV life cycle.


Asunto(s)
Hepacivirus/química , Membranas Artificiales , Modelos Químicos , Péptidos/química , Fosfolípidos/química , Proteínas no Estructurales Virales/química , Hepacivirus/metabolismo , Péptidos/metabolismo , Fosfolípidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas no Estructurales Virales/metabolismo
7.
Biochim Biophys Acta ; 1798(3): 327-37, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19631190

RESUMEN

We have identified a membrane-active region in the HCV NS4B protein by studying membrane rupture induced by a NS4B-derived peptide library on model membranes. This segment corresponds to one of two previously predicted amphipathic helix and define it as a new membrane association domain. We report the binding and interaction with model membranes of a peptide patterned after this segment, peptide NS4B(H2), and show that NS4B(H2) strongly partitions into phospholipid membranes, interacts with them, and is located in a shallow position in the membrane. Furthermore, changes in the primary sequence cause the disruption of the hydrophobicity along the structure and prevent the resulting peptide from interacting with the membrane. Our results suggest that the region where the NS4B(H2) is located might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex. Our findings therefore identify an important region in the HCV NS4B protein which might be implicated in the HCV life cycle and possibly in the formation of the membranous web.


Asunto(s)
Hepacivirus/metabolismo , Membranas Artificiales , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Anisotropía , Rastreo Diferencial de Calorimetría , Fluoresceínas/metabolismo , Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Soluciones , Espectrofotometría Infrarroja , Triptófano/metabolismo
8.
Mol Membr Biol ; 26(4): 236-48, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19412834

RESUMEN

The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein is responsible for the fusion between the membranes of the virus and the target cell. In the case of the S2 domain of protein S, it has been found a highly hydrophobic and interfacial domain flanked by the heptad repeat 1 and 2 regions; significantly, different peptides pertaining to this domain have shown a significant leakage effect and an important plaque formation inhibition, which, similarly to HIV-1 gp41, support the role of this region in the fusion process. Therefore, we have carried out a study of the binding and interaction with model membranes of a peptide corresponding to segment 1073-1095 of the SARS-CoV S glycoprotein, peptide SARS(L) in the presence of different membrane model systems, as well as the structural changes taking place in both the lipid and the peptide induced by the binding of the peptide to the membrane. Our results show that SARS(L) strongly partitions into phospholipid membranes and organizes differently in lipid environments, displaying membrane activity modulated by the lipid composition of the membrane. These data would support its role in SARS-CoV mediated membrane fusion and suggest that the region where this peptide resides could be involved in the merging of the viral and target cell membranes.


Asunto(s)
Liposomas/química , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/química , Péptidos/química , Proteínas del Envoltorio Viral/química , Fosfolípidos/química , Espectrofotometría Infrarroja , Glicoproteína de la Espiga del Coronavirus
9.
Biochim Biophys Acta ; 1778(12): 2765-74, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18721794

RESUMEN

In order to complete the fusion process of SARS-CoV virus, several regions of the S2 virus envelope glycoprotein are necessary. Recent studies have identified three membrane-active regions in the S2 domain of SARS-CoV glycoprotein, one situated downstream of the minimum furin cleavage, which is considered the fusion peptide (SARSFP), an internal fusion peptide located immediately upstream of the HR1 region (SARSIFP) and the pre-transmembrane domain (SARSPTM). We have explored the capacity of these selected membrane-interacting regions of the S2 SARS-CoV fusion protein, alone or in equimolar mixtures, to insert into the membrane as well as to perturb the dipole potential of the bilayer. We show that the three peptides interact with lipid membranes depending on lipid composition and experiments using equimolar mixtures of these peptides show that different segments of the protein may act in a synergistic way suggesting that several membrane-active regions could participate in the fusion process of the SARS-CoV.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Péptidos/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Glicoproteínas de Membrana/genética , Modelos Biológicos , Biología Molecular , Péptidos/química , Péptidos/genética , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/genética
10.
Biochemistry ; 47(31): 8214-24, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18616295

RESUMEN

The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. The S2 domain of protein S has been suggested to have two fusion peptides, one located at its N-terminus, downstream of the furin cleavage, and another, more internal, located immediately upstream of the HR1. Therefore, we have carried out a study of the binding and interaction with model membranes of a peptide corresponding to segment 873-888 of the SARS-CoV S glycoprotein, peptide SARS IFP, as well as the structural changes taking place in both the phospholipid and the peptide induced by the binding of the peptide to the membrane. We demonstrate that SARS IFP peptide binds to and interacts with phospholipid model membranes and shows a higher affinity for negatively charged phospholipids than for zwitterionic ones. SARS IFP peptide specifically decreases the mobility of the phospholipid acyl chains of negatively charged phospholipids and adopts different conformations in the membrane depending upon their composition. These data support its role in SARS-mediated membrane fusion and suggest that the regions where this peptide resides might assist the fusion peptide and/or the pretransmembrane segment of the SARS-CoV spike glycoprotein in the fusion process.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Péptidos/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Dicroismo Circular , Polarización de Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Fusión de Membrana , Glicoproteínas de Membrana/química , Péptidos/química , Unión Proteica , Espectrofotometría Infrarroja , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/química
11.
J Phys Chem B ; 112(23): 6997-7007, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18489147

RESUMEN

The SARS coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a Class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. In the present work, we report a study of the binding and interaction with model membranes of a peptide pertaining to the putative fusion domain of SARS-CoV, SARS FP, as well as the structural changes that take place in both the phospholipid and the peptide molecules upon this interaction. From fluorescence and infrared spectroscopies, the peptide ability to induce membrane leakage, aggregation and fusion, as well as its affinity toward specific phospholipids, was assessed. We demonstrate that SARS FP strongly partitions into phospholipid membranes, more specifically with those containing negatively charged phospholipids, increasing the water penetration depth and displaying membrane-activity modulated by the lipid composition of the membrane. Interestingly, peptide organization is different depending if SARS FP is in water or bound to the membrane. These data suggest that SARS FP could be involved in the merging of the viral and target cell membranes by perturbing the membrane outer leaflet phospholipids and specifically interacting with negatively charged phospholipids located in the inner leaflet.


Asunto(s)
Lípidos/química , Fusión de Membrana , Glicoproteínas de Membrana/química , Proteínas del Envoltorio Viral/química , Cinética , Conformación Proteica , Espectrometría de Fluorescencia , Glicoproteína de la Espiga del Coronavirus
12.
Biochim Biophys Acta ; 1778(10): 2069-80, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18424260

RESUMEN

The previously identified membranotropic regions of the HCV E1 envelope glycoprotein, a class II membrane fusion protein, permitted us to identify different sequences which might be implicated in viral membrane fusion, membrane interaction and/or protein-protein binding. HCV E1 glycoprotein presents a membrano-active region immediately adjacent to the transmembrane segment, which could be involved in membrane destabilization similarly to the pre-transmembrane domains of class I fusion proteins. Consequently, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment 309-340, peptide E1PTM, as well as the structural changes which take place in both the peptide and the phospholipid molecules induced by the binding of the peptide to the membrane. Here we demonstrate that peptide E1(PTM) strongly partitions into phospholipid membranes, interacts with negatively-charged phospholipids and locates in a shallow position in the membrane. These data support its role in HCV-mediated membrane fusion and suggest that the mechanism of membrane fusion elicited by class I and II fusion proteins might be similar.


Asunto(s)
Membranas/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Membranas/química , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Compuestos de Piridinio/química , Compuestos de Piridinio/metabolismo , Proteínas del Envoltorio Viral/genética
13.
Biophys J ; 94(12): 4737-50, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18339752

RESUMEN

The previously identified membrane-active regions of the hepatitis C virus (HCV) E1 and E2 envelope glycoproteins led us to identify different segments that might be implicated in viral membrane fusion, membrane interaction, and/or protein-protein binding. HCV E2 glycoprotein contains one of the most membranotropic segments, segment 603-634, which has been implicated in CD81 binding, E1/E2 and E2/E2 dimerization, and membrane interaction. Through a series of complementary experiments, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment 603-634, peptide E2(FP), as well as the structural changes induced by membrane binding that take place in both the peptide and the phospholipid molecules. Here, we demonstrate that peptide E2(FP) binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane, and is probably oligomerized in the presence of membranes. These data support the role of E2(FP) in HCV-mediated membrane fusion, and sustain the notion that this segment of the E2 envelope glycoprotein, together with other segments of E2 and E1 glycoproteins, provides the driving force for the merging of the viral and target cell membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfolípidos/química , Proteínas del Envoltorio Viral/química , Sitios de Unión , Unión Proteica , Mapeo de Interacción de Proteínas
14.
Biochim Biophys Acta ; 1778(5): 1298-307, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18230333

RESUMEN

The membrane fusion protein of HIV-1 is the envelope transmembrane gp41 glycoprotein, which is the responsible of the membrane fusion between the virus and the target cell. Gp41 has an unusual cytoplasmic tail, the endodomain, containing highly helicoidal segments with large hydrophobic moments, the so called lentivirus lytic peptides or LLPs. According to our previous work, one of the most membranotropic regions along the whole gp41 glycoprotein was located in the LLP3 region of the gp41. In order to get new insights into the viral membrane fusion mechanism, a peptide pertaining to the LLP3 domain has been studied by infrared, fluorescence and calorimetry regarding its structure, its ability to induce membrane rupture and aggregation, as well as its affinity towards specific phospholipids. Our results demonstrate that this peptide interacts with phospholipid-containing model membranes, affects the phase-behavior of membrane phospholipids and induces leakage and aggregation of liposomes. The membrane-perturbing properties of LLP3, together with the possibility that the Kennedy sequence could be part of an external loop, open the possibility that these domains might function in modulating viral membrane fusion or budding, synergistically with other membranotropic regions of the gp41 glycoprotein.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/metabolismo , Secuencia de Aminoácidos , Fenómenos Biofísicos , Biofisica , Rastreo Diferencial de Calorimetría , Proteína gp41 de Envoltorio del VIH/química , Fusión de Membrana , Datos de Secuencia Molecular , Análisis Espectral/métodos
15.
J Biol Chem ; 283(13): 8089-101, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18198177

RESUMEN

We have identified the membrane-active regions of the hepatitis C virus p7 protein by performing an exhaustive study of membrane rupture, hemifusion, and fusion induced by a p7-derived peptide library on model membranes having different phospholipid compositions. We report the identification in p7 of a highly membranotropic region located at the loop domain of the protein. Here, we have investigated the interaction of a peptide patterned after the p7 loop (peptide p7(L)), studying its binding and interaction with the lipid bilayer, and evaluated the binding-induced structural changes of the peptide and the phospholipids. We show that positively rich p7(L) strongly binds to negatively charged phospholipids and it is localized in a shallow position in the bilayer. Furthermore, peptide p7(L) exhibits a high tendency to oligomerize in the presence of phospholipids, which could be the driving force for the formation of the active ion channel. Therefore, our findings suggest that the p7 loop could be an attractive candidate for antiviral drug development, because it could be a target for antiviral compounds that may lead to new vaccine strategies.


Asunto(s)
Membrana Celular/metabolismo , Hepacivirus/química , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Membrana Celular/efectos de los fármacos , Hepacivirus/genética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Termodinámica , Proteínas Virales/genética
16.
J Phys Chem B ; 111(49): 13714-25, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18020324

RESUMEN

The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a Class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. In order to gain new insight into the protein membrane alteration leading to the viral fusion mechanism, a peptide pertaining to the putative pre-transmembrane domain (PTM) of the S glycoprotein has been studied by infrared and fluorescence spectroscopies regarding its structure, its ability to induce membrane leakage, aggregation, and fusion, as well as its affinity toward specific phospholipids. We demonstrate that the SARS-CoV PTM peptide binds to and interacts with phospholipid model membranes, and, at the same time, it adopts different conformations when bound to membranes of different compositions. As it has been already suggested for other viral fusion proteins such as HIV gp41, the region of the SARS-CoV protein where the PTM peptide resides could be involved in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the SARS-CoV S glycoprotein to heighten the fusion process and therefore might be essential for the assistance and enhancement of the viral and cell fusion process.


Asunto(s)
Glicoproteínas de Membrana/química , Membranas Artificiales , Péptidos/química , Fosfolípidos/química , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Cromatografía en Gel , Polarización de Fluorescencia , Datos de Secuencia Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Glicoproteína de la Espiga del Coronavirus
17.
Biochemistry ; 46(37): 10572-84, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17711304

RESUMEN

The HIV-1 gp41 envelope glycoprotein is responsible for the membrane fusion between the virus and the target cell. According to recent models, the N-terminal coiled-coil (NHR) region of gp41 is involved in forming the interfaces between neighboring helices in the six-helix bundle, as well as in membrane binding and perturbation. In order to get new insights into the viral membrane fusion mechanism, two peptides, pFP15 and pFP23, pertaining to the first part of the gp41 NHR domain were studied regarding their structure and their ability to induce membrane leakage, aggregation, and fusion, as well as their affinity toward specific phospholipids by a variety of spectroscopic methods. Our results demonstrate that the first part of the NHR domain interacts with negatively charged phospholipid-containing model membranes, modifies the phase behavior of membrane phospholipids, and induces leakage and aggregation of liposomes, suggesting that it could be involved directly in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the gp41 glycoprotein to boost the fusion process. On the other hand, we suggest that this region of the NHR domain could be involved in the first steps of the destabilization of the HIV-1 gp41 six-helix bundle after its interaction with negatively charged phospholipid headgroups.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , Péptidos/metabolismo , Fosfolípidos/metabolismo , Liposomas Unilamelares/metabolismo , Secuencia de Aminoácidos , Anisotropía , Dicroismo Circular , Fluorescencia , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
18.
Biochim Biophys Acta ; 1768(6): 1659-70, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17434443

RESUMEN

The protein harakiri (Hrk) is a pro-apoptotic BH3-only protein which belongs to the Bcl-2 family. Hrk appears associated to the mitochondrial outer membrane, apparently by a putative transmembrane domain, where it exerts its function. In this work we have identified a 27mer peptide supposed to be the putative membrane domain of the protein at the C-terminal region, and used infrared and fluorescence spectroscopies to study its secondary structure as well as to characterize its effect on the physical properties of phospholipid model membranes. The results presented here showed that the C-terminal region of Hrk adopts a predominantly alpha-helical structure whose proportion and destabilization capability varied depending on phospholipid composition. Moreover it was found that the orientation of the alpha-helical component of this C-terminal Hrk peptide was nearly perpendicular to the plane of the membrane. These results indicate that this domain is able of inserting into membranes, where it adopts a transmembrane alpha-helical structure as well as it considerably perturbs the physical properties of the membrane.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/genética , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Péptidos/síntesis química , Fosfolípidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Espectrofotometría Infrarroja
19.
Arch Biochem Biophys ; 453(2): 224-36, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16949545

RESUMEN

Rosemary (Rosmarinus officinalis) extracts are widely used in the food, nutraceutical and cosmetic areas. Their major bioactive components have shown antioxidant, antimicrobial, anti-inflammatory, antitumorigenic and chemopreventive activities. In this work, the bioactive compounds deriving from rosemary leaves (carnosol, CAR; carnosic acid, CA; rosmadial, RAL; genkwanin, GW; rosmarinic acid, RA) were isolated and their effects on the phase behaviour of model membranes were studied by several complementary biophysical techniques. All diterpenes studied, and specifically CAR, decreased the hydrophobic interactions between acyl chains, as well as broadened and shifted the phospholipid transition to lower temperatures into dimyristoylphosphatidylcholine (DMPC) membranes. In addition, all diterpenes and genkwanin increased the lipid order of fluid DMPC membranes, exhibiting CAR and RAL the strongest membrane-rigidifying effect. The diterpenoids, especially CA and RAL, promoted the formation of hexagonal-H(II) phases at low temperatures in dielaidoylphosphatidylethanolamine (DEPE) membranes which exhibited a smaller tube-to-tube distance compared to pure phospholipid. These diterpenes were also able of promoting isotropic structures in DEPE membranes which consisted of non-periodically ordered lipid structures as demonstrated by X-ray diffraction. In contrast, minor effects were observed by rosmarinic acid. In conclusion, diterpenes and genkwanin from rosemary show membrane-rigidifying effects which may contribute to their antioxidant capacity through hindering diffusion of free radicals.


Asunto(s)
Membrana Dobles de Lípidos/química , Fluidez de la Membrana/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rosmarinus/química , Diterpenos/química , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/genética , Membranas Artificiales , Conformación Molecular , Fosfolípidos/química , Polimorfismo Genético/efectos de los fármacos
20.
Biochemistry ; 45(11): 3755-68, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16533059

RESUMEN

We have identified the membrane-active regions of the full sequences of the HCV E1 and E2 envelope glycoproteins by performing an exhaustive study of membrane leakage, hemifusion, and fusion induced by 18-mer peptide libraries on model membranes having different phospholipid compositions. The data and their comparison have led us to identify different E1 and E2 membrane-active segments which might be implicated in viral membrane fusion, membrane interaction, and/or protein-protein binding. Moreover, it has permitted us to suggest that the fusion peptide might be located in the E1 glycoprotein and, more specifically, the segment comprised by amino acid residues 265-296. The identification of these membrane-active segments from the E1 and E2 envelope glycoproteins, as well as their membranotropic propensity, supports their direct role in HCV-mediated membrane fusion, sustains the notion that different segments provide the driving force for the merging of the viral and target cell membranes, and defines those segments as attractive targets for further development of new antiviral compounds.


Asunto(s)
Hepacivirus/química , Membranas/química , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/fisiología , Sitios de Unión , Fusión de Membrana/fisiología , Biblioteca de Péptidos , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...