Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273201

RESUMEN

Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, inflammation, and aberrant differentiation. Imiquimod-induced psoriasis in rodent models has been widely used to study the pathogenesis of the disease and evaluate potential therapeutic interventions. In this study, we investigated the efficacy of two commonly used treatments, Clobetasol and Tacrolimus, in ameliorating psoriatic symptoms in an Imiquimod-induced psoriasis Wistar rat model. Interestingly, rat models are poorly evaluated in the literature despite rats displaying several advantages in evaluating pharmacological substances. Psoriasis-like skin lesions were induced by topical application of Imiquimod cream on shaved dorsal skin for seven consecutive days. Following induction, rats in the treatment groups received either a Clobetasol or Tacrolimus ointment once daily for one week, while the control group did not receive any application. Disease severity was assessed using clinical scoring, histological examination, and measurement of proinflammatory cytokine levels. Both Clobetasol and Tacrolimus treatments significantly reduced psoriatic lesion severity compared to the control group. Clinical scoring revealed a decrease in erythema, scaling, transepidermal water loss, and thickness of skin lesions in both treatment groups with a more marked effect with Clobetasol. Histological analysis demonstrated reduced epidermal hyperplasia in treated animals compared to controls. Furthermore, Clobetasol led to a significant reduction in the expression levels of the interleukin-17 (IL-17a and IL-17f) proinflammatory cytokines in lesioned skin. Overall, our findings demonstrated the therapeutic efficacy of both Clobetasol and, in a modest manner, Tacrolimus in attenuating Imiquimod-induced psoriasis-like symptoms in a rat model. These results support the clinical use of these agents in the management of psoriasis and mitigating psoriatic inflammation. They also provide insights into the use of rats as a relevant species for the Imiquimod-induced psoriasis model.


Asunto(s)
Clobetasol , Modelos Animales de Enfermedad , Imiquimod , Psoriasis , Ratas Wistar , Tacrolimus , Animales , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Imiquimod/efectos adversos , Clobetasol/uso terapéutico , Clobetasol/farmacología , Tacrolimus/farmacología , Tacrolimus/efectos adversos , Ratas , Masculino , Citocinas/metabolismo , Piel/patología , Piel/efectos de los fármacos
2.
BMC Res Notes ; 16(1): 348, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007440

RESUMEN

OBJECTIVES: Animal models of skin disease are used to evaluate therapeutics to alleviate disease. One common clinical dermatological complaint is pruritus (itch), but there is a lack of standardization in the characterization of pre-clinical models and scratching behavior, a key itch endpoint, is often neglected. One such model is the widely used imiquimod (IMQ) mouse model of psoriasis. However, it lacks characterized behavioral attributes like scratching, nor has widely expanded to other species like rats. Given these important attributes, this study was designed to broaden the characterization beyond the expected IMQ-induced psoriasis-like skin inflammatory skin changes and to validate the role of a potential therapeutic agent for pruritus in our genetic rat model. The study included female Wistar rats and genetically modified knockin (humanized proteinase-activated receptor 2 (F2RL1) female rats, with the widely used C57BL/6 J mice as a methodology control for typical IMQ dosing. RESULTS: We demonstrate that the IMQ model can be reproduced in rats, including their genetically modified derivatives, and how scratching can be used as a key behavioral endpoint. We systemically delivered an anti-PAR2 antibody (P24E1102) which reversed scratching bouts-validating this behavioral methodology and have shown its feasibility and value in identifying effective antipruritic drugs.


Asunto(s)
Antipruriginosos , Psoriasis , Ratones , Ratas , Femenino , Animales , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Imiquimod/efectos adversos , Ratas Wistar , Ratones Endogámicos C57BL , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Prurito/genética , Piel , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Modelos Animales de Enfermedad
3.
Nat Commun ; 14(1): 3188, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280206

RESUMEN

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.


Asunto(s)
Melanoma , Animales , Ratones , Melanoma/metabolismo , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias , Células Clonales/metabolismo
4.
Cell Rep Methods ; 3(4): 100459, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159666

RESUMEN

T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Animales , Ratones , Receptores de Antígenos de Linfocitos T/genética , Neoplasias/genética , Bioensayo , Ingeniería Celular , Clonación Molecular
5.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37023751

RESUMEN

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Asunto(s)
Epítopos de Linfocito T , Péptidos , Humanos , Animales , Ratones , Bovinos , Ligandos , Unión Proteica , Pollos/metabolismo , Aprendizaje Automático , Antígenos de Histocompatibilidad Clase II , Alelos
6.
iScience ; 26(4): 106288, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950115

RESUMEN

Antigen selection and prioritization represent crucial determinants of vaccines' efficacy. Here, we compare two personalized dendritic cell-based vaccination strategies using whole-tumor lysate or neoantigens. Data in mouse and in cancer patients demonstrate that peptide vaccines using neoantigens predicted on the sole basis of in silico peptide-major histocompatibility complex (MHC) binding affinity underperform relative to whole-tumor-lysate vaccines. In contrast, effective in vitro peptide-MHC binding affinity and peptide immunogenicity significantly improve the prioritization of tumor-rejecting neoepitopes and result in more efficacious vaccines.

7.
Cell Syst ; 14(1): 72-83.e5, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36603583

RESUMEN

The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Epítopos de Linfocito T , Presentación de Antígeno , SARS-CoV-2 , Ligandos , Receptores de Antígenos de Linfocitos T , Antígenos HLA
8.
Front Immunol ; 13: 973986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032094

RESUMEN

Recruitment and activation of CD8 T cells occur through specific triggering of T cell receptor (TCR) by peptide-bound human leucocyte antigen (HLA) ligands. Within the generated trimeric TCR-peptide:HLA complex, the molecular binding affinities between peptide and HLA, and between TCR and peptide:HLA both impact T cell functional outcomes. However, how their individual and combined effects modulate immunogenicity and overall T cell responsiveness has not been investigated systematically. Here, we established two panels of human tumor peptide variants differing in their affinity to HLA. For precise characterization, we developed the "blue peptide assay", an upgraded cell-based approach to measure the peptide:HLA affinity. These peptide variants were then used to investigate the cross-reactivity of tumor antigen-specific CD8 T cell clonotypes derived from blood of cancer patients after vaccination with either the native or an affinity-optimized Melan-A/MART-1 epitope, or isolated from tumor infiltrated lymph nodes (TILNs). Vaccines containing the native tumor epitope generated T cells with better functionality, and superior cross-reactivity against potential low affinity escape epitopes, as compared to T cells induced by vaccines containing an HLA affinity-optimized epitope. Comparatively, Melan-A/MART-1-specific TILN cells displayed functional and cross-reactive profiles that were heterogeneous and clonotype-dependent. Finally, we took advantage of a collection of T cells expressing affinity-optimized NY-ESO-1-specific TCRs to interrogate the individual and combined impact of peptide:HLA and TCR-pHLA affinities on overall CD8 T cell responses. We found profound and distinct effects of both biophysical parameters, with additive contributions and absence of hierarchical dominance. Altogether, the biological impact of peptide:HLA and TCR-pHLA affinities on T cell responses was carefully dissected in two antigenic systems, frequently targeted in human cancer immunotherapy. Our technology and stepwise comparison open new insights into the rational design and selection of vaccine-associated tumor-specific epitopes and highlight the functional and cross-reactivity profiles that endow T cells with best tumor control capacity.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Linfocitos T CD8-positivos , Epítopos , Antígenos de Histocompatibilidad Clase II , Humanos , Antígeno MART-1 , Péptidos
9.
iScience ; 25(5): 104215, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494241

RESUMEN

CD4+ T cell activation in infectious diseases and cancer is governed by the recognition of peptides presented on class II human leukocyte antigen (HLA-II) molecules. Therefore, HLA-II ligands represent promising targets for vaccine design and personalized cancer immunotherapy. Much work has been done to identify and predict unmodified peptides presented on HLA-II molecules. However, little is known about the presentation of phosphorylated HLA-II ligands. Here, we analyzed Mass Spectrometry HLA-II peptidomics data and identified 1,943 unique phosphorylated HLA-II ligands. This enabled us to precisely define phosphorylated binding motifs for more than 30 common HLA-II alleles and to explore various molecular properties of phosphorylated peptides. Our data were further used to develop the first predictor of phosphorylated peptide presentation on HLA-II molecules.

10.
Nat Biotechnol ; 40(5): 656-660, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34782741

RESUMEN

The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Animales , Antígenos de Neoplasias/genética , Linfocitos T CD8-positivos , Humanos , Linfocitos Infiltrantes de Tumor , Ratones , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
11.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33637530

RESUMEN

CD4 T cells have been implicated in cancer immunity for their helper functions. Moreover, their direct cytotoxic potential has been shown in some patients with cancer. Here, by mining single-cell RNA-seq datasets, we identified CD4 T cell clusters displaying cytotoxic phenotypes in different human cancers, resembling CD8 T cell profiles. Using the peptide-MHCII-multimer technology, we confirmed ex vivo the presence of cytolytic tumor-specific CD4 T cells. We performed an integrated phenotypic and functional characterization of these cells, down to the single-cell level, through a high-throughput nanobiochip consisting of massive arrays of picowells and machine learning. We demonstrated a direct, contact-, and granzyme-dependent cytotoxic activity against tumors, with delayed kinetics compared to classical cytotoxic lymphocytes. Last, we found that this cytotoxic activity was in part dependent on SLAMF7. Agonistic engagement of SLAMF7 enhanced cytotoxicity of tumor-specific CD4 T cells, suggesting that targeting these cells might prove synergistic with other cancer immunotherapies.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias , Linfocitos T CD8-positivos , Citotoxicidad Inmunológica , Humanos , Inmunoterapia , Linfocitos T Citotóxicos
12.
J Immunother Cancer ; 8(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32448802

RESUMEN

BACKGROUND: With immunotherapy gaining increasing approval for treatment of different tumor types, scientists rely on cutting edge methods for the monitoring of immune responses and biomarker development in patients. Due to the lack of tools to efficiently detect rare circulating human tumor-specific CD4 T cells, their characterization in patients still remains very limited. METHODS: We have used combinatorial staining strategies with peptide major histocompatibility complex class II (pMHCII) multimer constructs of different alleles to establish an optimized staining procedure for in vitro and direct ex-vivo visualization of tumor-specific CD4 T cells, in patient samples. Furthermore, we have generated reversible multimers to achieve optimal cell staining and yet disassemble prior to in vitro cell expansion, thus preventing activation induced cell death. RESULTS: We observed a vastly improved detection of tumor-specific, viral-specific and bacterial-specific cells with our optimization methods compared with the non-optimized staining procedure. By increasing the variety of fluorochromes used to label the pMHCII multimers, we were also able to increase the parallel detection of different specificities within one sample, including antigen-specific CD8 T cells. A decrease in cell viability was observed when using the full optimization method, but this was mitigated by the removal of neuraminidase and the use of reversible multimers. CONCLUSION: This new optimized staining procedure represents an advance toward better detection and analysis of antigen-specific CD4 T cells. It should facilitate state-of-the art precision monitoring of tumor-specific CD4 T cells and contribute to accelerate the use and the targeting of these cells in cancer immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Melanoma/diagnóstico , Monitorización Inmunológica/métodos , Neoplasias Cutáneas/diagnóstico , Adulto , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Epítopos de Linfocito T/inmunología , Femenino , Citometría de Flujo/métodos , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunogenicidad Vacunal , Masculino , Melanoma/inmunología , Melanoma/terapia , Persona de Mediana Edad , Imagen Molecular/métodos , Multimerización de Proteína , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Coloración y Etiquetado/métodos , Vacunas de Subunidad/administración & dosificación
13.
Methods Enzymol ; 631: 21-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31948548

RESUMEN

Peptide major histocompatibility complex (pMHC) multimers have been used since decades to identify, isolate and analyze antigen-specific T cells by flow (and more recently mass) cytometry. Yet well established as a standard technology, improvements are still required to face the growing needs of personalized immune monitoring. Here we review the latest developments about (i) the quality of pMHC class I and II monomers, (ii) the importance of the multimeric scaffold, (iii) the staining conditions and (iv) the high-throughput synthesis of pMHC monomers. Finally, innovative multiplexed, combinatorial strategies for parallel detection of antigen-specific T cells in a single sample are discussed.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Citometría de Flujo/métodos , Técnicas Inmunológicas/métodos , Humanos , Complejo Mayor de Histocompatibilidad , Péptidos , Coloración y Etiquetado
14.
Mol Cell Proteomics ; 19(2): 390-404, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31848261

RESUMEN

The presentation of peptides on class I human leukocyte antigen (HLA-I) molecules plays a central role in immune recognition of infected or malignant cells. In cancer, non-self HLA-I ligands can arise from many different alterations, including non-synonymous mutations, gene fusion, cancer-specific alternative mRNA splicing or aberrant post-translational modifications. Identifying HLA-I ligands remains a challenging task that requires either heavy experimental work for in vivo identification or optimized bioinformatics tools for accurate predictions. To date, no HLA-I ligand predictor includes post-translational modifications. To fill this gap, we curated phosphorylated HLA-I ligands from several immunopeptidomics studies (including six newly measured samples) covering 72 HLA-I alleles and retrieved a total of 2,066 unique phosphorylated peptides. We then expanded our motif deconvolution tool to identify precise binding motifs of phosphorylated HLA-I ligands. Our results reveal a clear enrichment of phosphorylated peptides among HLA-C ligands and demonstrate a prevalent role of both HLA-I motifs and kinase motifs on the presentation of phosphorylated peptides. These data further enabled us to develop and validate the first predictor of interactions between HLA-I molecules and phosphorylated peptides.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ligandos , Espectrometría de Masas , Fosforilación , Proteómica
15.
J Mol Biol ; 431(24): 4941-4958, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31704286

RESUMEN

The coreceptor CD8αß can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8ß stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.


Asunto(s)
Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/inmunología , Complejos Multiproteicos/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD8/química , Antígenos CD8/genética , Antígenos de Histocompatibilidad/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/inmunología , Mutación , Péptidos/química , Péptidos/inmunología , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
16.
Nat Biotechnol ; 37(11): 1283-1286, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611696

RESUMEN

Predictions of epitopes presented by class II human leukocyte antigen molecules (HLA-II) have limited accuracy, restricting vaccine and therapy design. Here we combined unbiased mass spectrometry with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides eluted from HLA-II molecules. We then trained an epitope prediction algorithm with these data and improved prediction of pathogen and tumor-associated class II neoepitopes.


Asunto(s)
Epítopos/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Péptidos/análisis , Algoritmos , Línea Celular , Biología Computacional/métodos , Antígenos de Histocompatibilidad Clase II/química , Humanos , Espectrometría de Masas , Péptidos/inmunología
17.
J Immunol ; 201(12): 3705-3716, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30429286

RESUMEN

HLA-I molecules bind short peptides and present them for recognition by CD8+ T cells. The length of HLA-I ligands typically ranges from 8 to 12 aa, but variability is observed across different HLA-I alleles. In this study we collected recent in-depth HLA peptidomics data, including 12 newly generated HLA peptidomes (31,896 unique peptides) from human meningioma samples, to analyze the peptide length distribution and multiple specificity across 84 different HLA-I alleles. We observed a clear clustering of HLA-I alleles with distinct peptide length distributions, which enabled us to study the structural basis of peptide length distributions and predict peptide length distributions from HLA-I sequences. We further identified multiple specificity in several HLA-I molecules and validated these observations with binding assays. Explicitly modeling peptide length distribution and multiple specificity improved predictions of naturally presented HLA-I ligands, as demonstrated in an independent benchmarking based on the new human meningioma samples.


Asunto(s)
Antígenos/metabolismo , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Epítopos Inmunodominantes/metabolismo , Meningioma/inmunología , Péptidos/metabolismo , Alelos , Presentación de Antígeno , Antígenos/genética , Biología Computacional , Epítopos de Linfocito T/genética , Antígenos HLA/metabolismo , Humanos , Inmunidad Celular , Epítopos Inmunodominantes/genética , Ligandos , Modelos Químicos , Péptidos/genética , Polimorfismo Genético , Unión Proteica , Especificidad del Receptor de Antígeno de Linfocitos T
18.
Proc Natl Acad Sci U S A ; 115(20): 5083-5088, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712860

RESUMEN

HLA-I molecules play a central role in antigen presentation. They typically bind 9- to 12-mer peptides, and their canonical binding mode involves anchor residues at the second and last positions of their ligands. To investigate potential noncanonical binding modes, we collected in-depth and accurate HLA peptidomics datasets covering 54 HLA-I alleles and developed algorithms to analyze these data. Our results reveal frequent (442 unique peptides) and statistically significant C-terminal extensions for at least eight alleles, including the common HLA-A03:01, HLA-A31:01, and HLA-A68:01. High resolution crystal structure of HLA-A68:01 with such a ligand uncovers structural changes taking place to accommodate C-terminal extensions and helps unraveling sequence and structural properties predictive of the presence of these extensions. Scanning viral proteomes with the C-terminal extension motifs identifies many putative epitopes and we demonstrate direct recognition by human CD8+ T cells of a 10-mer epitope from cytomegalovirus predicted to follow the C-terminal extension binding mode.


Asunto(s)
Presentación de Antígeno/inmunología , Epítopos de Linfocito T/inmunología , Antígenos HLA/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T/inmunología , Algoritmos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Ligandos , Unión Proteica
19.
J Pharmacol Exp Ther ; 366(2): 349-364, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777040

RESUMEN

Preterm birth is the major challenge in obstetrics, affecting ∼10% of pregnancies. Pan-prostaglandin synthesis inhibitors [nonsteroidal anti-inflammatory drugs (NSAIDs)] prevent preterm labor and prolong pregnancy but raise concerns about fetal renal and cardiovascular safety. We conducted preclinical studies examining the tocolytic effect and fetal safety of the oral prodrug candidate OBE022 [(S)-2-amino-3-methyl-butyric acid (S)-3-{[(S)-3-(biphenyl-4-sulfonyl)-thiazolidine-2-carbonyl]-amino}-3-(4-fluoro-phenyl)-propyl ester] and its parent OBE002 [(S)-3-(biphenyl-4-sulfonyl)-thiazolidine-2-carboxylic acid [(S)-1-(4-fluoro-phenyl)-3-hydroxy-propyl]-amide], both potent and highly selective antagonist of the contractile prostaglandin F2α (PGF2α ) receptor (FP). Efficacy of OBE022 and OBE002, alone and in combination with other tocolytics, was assessed in human tissues and pregnant animal models for inhibition of uterine contraction and delay of parturition. Selective safety of OBE022 and/or OBE002, compared with NSAID indomethacin, was assessed on renal function, closure of the ductus arteriosus, and inhibition of platelet aggregation. In in vitro studies, OBE002 inhibited spontaneous, oxytocin- and PGF2α -induced human myometrial contractions alone and was more effective in combination with atosiban or nifedipine. In in vivo studies, OBE022 and OBE002 reduced spontaneous contractions in near-term pregnant rats. In pregnant mice, OBE022 delayed RU486 [(8S,11R,13S,14S,17S)-11-[4-(dimethylamino)phenyl]-17-hydroxy-13-methyl-17-prop-1-ynyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one] -induced parturition and exerted synergistic effects in combination with nifedipine. OBE022 and/or OBE002 did not show the fetal side effects of ductus arteriosus constriction, impairment of kidney function, or inhibition of platelet aggregation observed with indomethacin. Orally active OBE022 and OBE002 exhibits potent tocolytic effects on human tissues ex vivo and animal models in vivo without causing the adverse fetal side effects seen with indomethacin. Selectively targeting the FP receptor in combination with existing tocolytics may be an effective strategy for preventing or delaying preterm delivery.


Asunto(s)
Ésteres/uso terapéutico , Trabajo de Parto Prematuro/tratamiento farmacológico , Receptores de Prostaglandina/antagonistas & inhibidores , Seguridad , Sulfonas/uso terapéutico , Tiazolidinas/efectos adversos , Tiazolidinas/farmacología , Administración Oral , Animales , Conducto Arterial/efectos de los fármacos , Conducto Arterial/fisiopatología , Ésteres/química , Ésteres/farmacología , Femenino , Humanos , Miometrio/efectos de los fármacos , Miometrio/fisiopatología , Trabajo de Parto Prematuro/fisiopatología , Agregación Plaquetaria/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Sulfonas/química , Sulfonas/farmacología , Tiazolidinas/administración & dosificación , Tiazolidinas/química , Tiazolidinas/uso terapéutico , Contracción Uterina/efectos de los fármacos
20.
Nat Commun ; 9(1): 1092, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545564

RESUMEN

Immunotherapy directed against private tumor neo-antigens derived from non-synonymous somatic mutations is a promising strategy of personalized cancer immunotherapy. However, feasibility in low mutational load tumor types remains unknown. Comprehensive and deep analysis of circulating and tumor-infiltrating lymphocytes (TILs) for neo-epitope specific CD8+ T cells has allowed prompt identification of oligoclonal and polyfunctional such cells from most immunotherapy-naive patients with advanced epithelial ovarian cancer studied. Neo-epitope recognition is discordant between circulating T cells and TILs, and is more likely to be found among TILs, which display higher functional avidity and unique TCRs with higher predicted affinity than their blood counterparts. Our results imply that identification of neo-epitope specific CD8+ T cells is achievable even in tumors with relatively low number of somatic mutations, and neo-epitope validation in TILs extends opportunities for mutanome-based personalized immunotherapies to such tumors.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/terapia , Antígenos de Neoplasias/inmunología , Epítopos de Linfocito T/metabolismo , Femenino , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Ováricas/inmunología , Receptores de Antígenos de Linfocitos T/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...