RESUMEN
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias de la Mama , Peptidilprolil Isomerasa de Interacción con NIMA , Femenino , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Oxígeno , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Fosforilación , Serina/genética , Serina/metabolismoRESUMEN
Hypoxia-inducible factor-1α (HIF-1α) is highly expressed/activated in most hypoxic tumors including hepatocellular carcinoma (HCC). Another key transcription factor, nuclear factor erythroid 2-related factor 2 (NRF2), is also constitutively overactivated in HCC. In an attempt to determine whether HIF-1α and NRF2 could play complementary roles in HCC growth and progression, we investigated the crosstalk between these two transcription factors and underlying molecular mechanisms in cultured HCC cells and experimentally induced hepatocarcinogenesis as well as clinical settings. While silencing of HIF-1α in HepG2 human hepatoma cells did not alter the protein expression of NRF2, NRF2 knockdown markedly reduced the nuclear accumulation of HIF-1α without influencing its mRNA expression. In diethylnitrosamine-induced hepatocarcinogenesis in wild type mice, there was elevated NRF2 expression with concomitant upregulation of HIF-1α. However, this was abolished in Nrf2 knockout mice. NRF2 and HIF-1α co-localized and physically interacted with each other as assessed by in situ proximity ligation and immunoprecipitation assays. In addition, the interaction between NRF2 and HIF-1α as well as their overexpression was found in tumor specimens obtained from HCC patients. In normoxia, HIF-1α undergoes hydroxylation by a specific HIF-prolyl hydroxylase domain protein (PHD), which facilitates ubiquitination and proteasomal degradation of HIF-1α. NRF2 contributes to pseudohypoxia, by directly binding to the oxygen-dependent degradation (ODD) domain of HIF-1α, which hampers the PHD2-mediated hydroxylation, concomitant recruitment of von-Hippel-Lindau and ubiquitination of HIF-1α.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor 2 Relacionado con NF-E2/genéticaRESUMEN
Heme oxygenase-1 (HO-1) is a critical stress-responsive enzyme that has antioxidant and anti-inflammatory functions. HO-1 catalyzes heme degradation, which gives rise to the formation of carbon monoxide (CO), biliverdin, and iron. The upregulation of HO-1 under pathological conditions associated with cellular stress represents an important cytoprotective defense mechanism by virtue of the anti-oxidant properties of the bilirubin and the anti-inflammatory effect of the CO produced. The same mechanism is hijacked by premalignant and cancerous cells. In recent years, however, there has been accumulating evidence supporting that the upregulation of HO-1 promotes cancer progression, independently of its catalytic activity. Such non-canonical functions of HO-1 are associated with its interaction with other proteins, particularly transcription factors. HO-1 also undergoes post-translational modifications that influence its stability, functional activity, cellular translocation, etc. HO-1 is normally present in the endoplasmic reticulum, but distinct subcellular localizations, especially in the nucleus, are observed in multiple cancers. The nuclear HO-1 modulates the activation of various transcription factors, which does not appear to be mediated by carbon monoxide and iron. This commentary summarizes the non-canonical functions of HO-1 in the context of cancer growth and progression and underlying regulatory mechanisms.
RESUMEN
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) has been frequently overexpressed in many types of malignancy, suggesting its oncogenic function. It recognizes phosphorylated serine or threonine (pSer/Thr) of a target protein and isomerizes the adjacent proline (Pro) residue, thereby altering folding, subcellular localization, stability, and function of target proteins. The oncogenic transcription factor, Nrf2 harbors the pSer/Thr-Pro motif. This prompted us to investigate whether Pin1 could bind to Nrf2 and influence its stability and function in the context of implications for breast cancer development and progression. The correlation between Pin1 and Nrf2 in the triple-negative breast cancer cells was validated by RNASeq analysis as well as immunofluorescence staining. Interaction between Pin1 and Nrf2 was assessed by co-immunoprecipitation and an in situ proximity ligation assay. We found that mRNA and protein levels of Pin1 were highly increased in the tumor tissues of triple-negative breast cancer patients and the human breast cancer cell line. Genetic or pharmacologic inhibition of Pin1 enhanced the ubiquitination and degradation of Nrf2. In contrast, the overexpression of Pin1 resulted in the accumulation of Nrf2 in the nucleus, without affecting its transcription. Notably, the phosphorylation of Nrf2 at serine 215, 408, and 577 is essential for its interaction with Pin1. We also identified phosphorylated Ser104 and Thr277 residues in Keap1, a negative regulator of Nrf2, for Pin1 binding. Pin1 plays a role in breast cancer progression through stabilization and constitutive activation of Nrf2 by competing with Keap1 for Nrf2 binding.
Asunto(s)
Neoplasias de la Mama/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Neoplasias de la Mama/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Proteínas de Neoplasias/genética , Unión Proteica , Estabilidad Proteica , Proteolisis , UbiquitinaciónRESUMEN
We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were subjected to fractionation, followed by separation using high-speed counter-current chromatography (HSCCC) and preparative HPLC. Separation and identification revealed the presence of caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and butyl rosmarinate. Of these, rosmarinic acid, methyl rosmarinate, and butyl rosmarinate possessed remarkable antioxidant and AR inhibitory activities. The other compounds were less active. In particular, rosmarinic acid is the key contributor to the antioxidant and AR inhibitory activities of L. meyenii; it is rich in the MeOH extract (333.84 mg/g) and 50% MeOH extract (135.41 mg/g) of L. meyenii and is especially abundant in the EtOAc and n-BuOH fractions (373.71-804.07 mg/g) of the MeOH and 50% MeOH extracts. The results clarified the basis of antioxidant and AR inhibitory activity of L. meyenii, adding scientific evidence supporting its traditional use as an anti-diabetic herbal medicine. The HSCCC separation method established in this study can be used for the preparative separation of rosmarinic acid from natural products.
RESUMEN
Valeriana rigida Ruiz & Pav. (V. rigida) has long been used as a herbal medicine in Peru; however, its phytochemicals and pharmacology need to be scientifically explored. In this study, we combined the offline 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)-/ultrafiltration-high-performance liquid chromatography (HPLC) and high-speed counter-current chromatography (HSCCC)/pH-zone-refining counter-current chromatography (pH-zone-refining CCC) to screen and separate the antioxidants and aldose reductase (AR) inhibitors from the 70% MeOH extract of V. rigida, which exhibited remarkable antioxidant and AR inhibitory activities. Seven compounds were initially screened as target compounds exhibiting dual antioxidant and AR inhibitory activities using DPPH-/ultrafiltration-HPLC, which guided the subsequent pH-zone-refining CCC and HSCCC separations of these target compounds, namely 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-O-di-caffeoylquinic acid, 3,5-O-di-caffeoylquinic acid, 4,5-O-di-caffeoylquinic acid, and 3,4,5-O-tri-caffeoylquinic acid. These compounds are identified for the first time in V. rigida and exhibited remarkable antioxidant and AR inhibitory activities. The results demonstrate that the method established in this study can be used to efficiently screen and separate the antioxidants and AR inhibitors from natural products and, particularly, the root extract of V. rigida is a new source of caffeoylquinic acids with antioxidant and AR inhibitory activities, and it can be used as a potential functional food ingredient for diabetes.
RESUMEN
The hypoxia-inducible factor (HIF-1α) functions as a master regulator of oxygen homeostasis. Oxygen-dependent hydroxylation of HIF-1α is tightly regulated by prolyl hydroxylase domain containing proteins (PHD1, PHD2, and PHD3). The prolyl hydroxylation facilitates the recruitment of the von Hippel-Lindau (VHL) protein, leading to ubiquitination and degradation of HIF-1α by the proteasomes. Besides prolyl hydroxylation, phosphorylation of HIF-1α is another central post-translational modification, which regulates its stability under hypoxic conditions as well as normoxic conditions. By use of LC/MS/MS-based analysis, we were able to identify a specific serine residue (Ser451) of HIF-1α phosphorylated under hypoxic conditions. Using plasmids expressing wild type (WT), non-phosphorylatable mutant HIF-1α (S451A), and phosphomimetic mutant HIF-1α (S451E), we demonstrated that the phosphorylation at Ser451 is important in maintaining the HIF-1α protein stability. Notably, phosphorylation at S451 interrupts the interaction of HIF-1α with PHD and pVHL. A phosphomimetic construct of HIF-1α at Ser451 (S451E) is significantly more stable than WT HIF-1α under normoxic conditions. Cells transfected with unphosphorylatable HIF-1α exhibited significantly lower HIF-1 transcriptional activity than WT cells and markedly reduced tumor cell migration. Further, tumors derived from the phosphomimetic mutant cells grew faster, whereas the tumors derived from non-phosphorylatable mutant cells grew slower than the control tumors, suggesting that the phosphorylation of HIF-1α at the Ser451 site is critical to promote tumor growth in vivo. Taken together, our data suggest an alternative mechanism responsible for the regulation of HIF-1α stability.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sustitución de Aminoácidos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Hipoxia de la Célula , Células HCT116 , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Fosforilación , Prolil Hidroxilasas/química , Prolil Hidroxilasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Serina/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismoRESUMEN
Muehlenbeckia volcanica (Benth.) Endl. (M. volcanica), native to South America, is a traditional Peruvian medicinal plant that has multi-therapeutic properties; however, no phytochemicals have been identified from it yet. In this study, a five-step polarity-stepwise elution counter-current chromatography (CCC) was developed using methanol/water (1:5, v/v) as the stationary phase and different ratios of n-hexane, ethyl acetate, and n-butanol as mobile phases to separate the compounds from the 70% methanol extract of M. volcanica, by which six compounds with a wide range of polarities were separated in a single run of CCC and were identified as gallic acid, protocatechuic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid, rutin, quercitrin, and quercetin. Then, two compounds from the fractions of stepwise elution CCC were separated using conventional high-speed CCC, pH-zone-refining CCC, and preparative high-performance liquid chromatography, and identified as shikimic acid and miquelianin. These compounds are reported from M. volcanica for the first time. Notably, except for shikimic acid, all other compounds showed anti-diabetic potentials via antioxidant, antiglycation, and aldose reductase inhibition. The results suggest that the polarity-stepwise elution CCC can be used to efficiently separate or fractionate compounds with a wide range of polarities from natural products. Moreover, M. volcanica and its bioactive compounds are potent anti-diabetic agents.
Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Antioxidantes/farmacología , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Polygonaceae/química , Cromatografía Líquida de Alta Presión , Distribución en ContracorrienteRESUMEN
The inhibitory activities of Matricaria recutita L. 70% methanol extract were evaluated by isolating and testing 10 of its compounds on rat lens aldose reductase (RLAR), advanced glycation end products (AGEs), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. Among these compounds, apigenin-7-O-ß-D-glucoside, luteolin-7-O-ß-D-glucoside, apigenin-7-O-ß-D-glucuronide, luteolin-7-O-ß-D-glucuronide, 3,5-O-di-caffeoylquinic acid, apigenin, and luteolin showed potent inhibition, and their IC50 values in RLAR were 4.25, 1.12, 1.16, 0.85, 0.72, 1.72, and 1.42 µM, respectively. Furthermore, these compounds suppressed sorbitol accumulation in rat lens under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. Notably, luteolin-7-O-ß-D-glucuronide and luteolin showed antioxidative as well as AGE-inhibitory activities (IC50 values of these compounds in AGEs were 3.39 and 6.01 µM). These results suggest that the M. recutita extract and its constituents may be promising agents for use in the prevention or treatment of diabetic complications.
Asunto(s)
Aldehído Reductasa/metabolismo , Antioxidantes/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Cristalino/efectos de los fármacos , Matricaria , Extractos Vegetales/farmacología , Animales , Antioxidantes/metabolismo , Cristalino/metabolismo , Masculino , Extractos Vegetales/metabolismo , Ratas , Ratas Sprague-Dawley , Relación Estructura-ActividadRESUMEN
In the present study, the antioxidant and aldose reductase inhibitory activities of 24 Peruvian infusion tea plants were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and aldose reductase assays. Phoradendron sp. showed the highest inhibition of aldose reductase (IC50, 1.09±0.06µg/mL) and considerable antioxidant (IC50 of DPPH, 58.36±1.65µg/mL; IC50 of ABTS, 9.91±0.43µg/mL) effects. In order to identify the antioxidants and aldose reductase inhibitors of Phoradendron sp., DPPH-high performance liquid chromatography (HPLC) and ultrafiltration-HPLC assays were performed. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid, and 1,3,5-tri-O-caffeoylquinic acid were identified as the antioxidants and aldose reductase inhibitors; apigenin was identified as the antioxidant. Finally, Phoradendron sp. and its aldose reductase inhibitors also showed a dose-dependent anti-inflammatory effect without cellular toxicity. These results suggested that Phoradendron sp. can be a potent functional food ingredient as an antioxidant, aldose reductase inhibitor and anti-inflammatory agent.