RESUMEN
SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.
Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Movimiento Celular , MicroARNs/metabolismo , MicroARNs/genética , Lípidos/química , Línea Celular Tumoral , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genéticaRESUMEN
Ether lipids are composed of alkyl lipids with an ether bond at the sn-1 position of a glycerol backbone and alkenyl lipids, which possess a vinyl ether bond at the sn-1 position of the glycerol. These ether glycerolipids are present either as polar glycerophospholipids or neutral glycerolipids. Before studying the biological role of molecular species of ether glycerolipids, there is a need to separate and quantify total alkyl and alkenyl glycerolipids from biological samples in order to determine any variation depending on tissue or physiopathological conditions. Here, we detail the development of the first high-performance thin-layer chromatography method for the quantification of total alkyl and alkenyl glycerolipids thanks to the separation of their corresponding alkyl and alkenyl glycerols. This method starts with a reduction of all lipids after extraction, resulting in the reduction of neutral and polar ether glycerolipids into alkyl and alkenyl glycerols, followed by an appropriate purification and, finally, the linearly ascending development of alkyl and alkenyl glycerols on high-performance thin-layer chromatography plates, staining, carbonization and densitometric analysis. Calibration curves were obtained with commercial alkyl and alkenyl glycerol standards, enabling the quantification of alkyl and alkenyl glycerols in samples and thus directly obtaining the quantity of alkyl and alkenyl lipids present in the samples. Interestingly, we found a differential quantity of these lipids in shark liver oil compared to chimera. We quantified alkyl and alkenyl glycerolipids in periprostatic adipose tissues from human prostate cancer and showed the feasibility of this method in other biological matrices (muscle, tumor).
Asunto(s)
Aceites de Pescado , Lípidos , Tiburones , Animales , Cromatografía en Capa Delgada , Éter , Éteres , Glicerol , Aceites de Plantas , Lípidos/análisisRESUMEN
BACKGROUND: Prostate cancer (PCa) is more frequent and more aggressive in populations of African descent than in Caucasians. Since the fatty acid composition of peri-prostatic adipose tissue (PPAT) has been shown to differ according to the ethno-geographic origin and is involved in PCa aggressiveness, we aimed to analyze the cholesterol content of PPAT from Caucasian and African-Caribbean patients, in correlation with markers of disease aggressiveness and cholesterol metabolism in cancer tissues. METHODS: The quantification of cholesterol in PPAT was analyzed in 52 Caucasian and 52 African-Caribbean PCa patients, with in each group 26 indolent tumors (ISUP Group1 and pT2) and 26 potentially aggressive tumors (ISUP Group 3-5 and/or pT3). The expression of proteins involved in cholesterol metabolism was analyzed by immunohistochemistry on cancer tissue samples included in tissue microarrays. RESULTS: The amount of cholesterol esters was lower in PPAT from African-Caribbean patients compared with Caucasians, without any correlation with markers of disease aggressiveness. In cancer tissues from African-Caribbean patients, the expression of ABCA1 (involved in cholesterol efflux) was decreased, and that of SREBP-2 (involved in cholesterol uptake) was increased. In both groups of patients, SREBP-2 expression was strongly associated with that of Zeb1, a key player in the epithelial-to-mesenchymal transition (EMT) process. CONCLUSION: These results suggest that cholesterol metabolism differs according to the ethno-geographic origin, in both PPAT and cancer tissues. In African-Caribbeans, the orientation towards accumulation of cholesterol in cancer cells is associated with a more frequent state of EMT, which may promote PCa aggressiveness in this population.
Asunto(s)
Tejido Adiposo , Colesterol/metabolismo , Próstata/patología , Neoplasias de la Próstata , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/análisis , Transportador 1 de Casete de Unión a ATP/análisis , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Población Negra/estadística & datos numéricos , Transición Epitelial-Mesenquimal , Francia/epidemiología , Humanos , Inmunohistoquímica , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/etnología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/análisis , Población Blanca/estadística & datos numéricosRESUMEN
White adipose tissue interacts closely with breast cancers through the secretion of soluble factors such as cytokines, growth factors or fatty acids. However, the molecular mechanisms of these interactions and their roles in cancer progression remain poorly understood. In this study, we investigated the role of fatty acids in the cooperation between adipocytes and breast cancer cells using a co-culture model. We report that adipocytes increase autophagy in breast cancer cells through the acidification of lysosomes, leading to cancer cell survival in nutrient-deprived conditions and to cancer cell migration. Mechanistically, the disturbance of membrane phospholipid composition with a decrease in arachidonic acid content is responsible for autophagy activation in breast cancer cells induced by adipocytes. Therefore, autophagy might be a central cellular mechanism of white adipose tissue interactions with cancer cells and thus participate in cancer progression.
RESUMEN
In a previous pilot study, we showed that polyunsaturated n-3 fatty acids of breast adipose tissues were associated with breast cancer multifocality. In the present study, we investigated biochemical, clinical and histological factors associated with breast cancer focality in a large cohort of women with positive hormone-receptors tumors. One hundred sixty-one consecutive women presenting with positive hormone-receptors breast cancer underwent breast-imaging procedures including a Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during surgery of tumors. A biochemical profile of breast adipose tissue fatty acids was established by gas chromatography. Clinicopathologic characteristics were correlated with multifocality. We assessed whether these factors were predictive of breast cancer focality. We found that tumor size (OR = 1.06 95%CI [1.02-1.09], p < 0.001) and decreased levels in breast adipose tissue of long-chain polyunsaturated n-3 fatty acids (OR = 0.11 95%CI [0.01-0.98], p = 0.03), were independent predictive factors of multifocality. Low levels of long chain polyunsaturated n-3 fatty acids in breast adipose tissue appear to contribute to breast cancer multifocality. The present results reinforce the link between dietary habits and breast cancer clinical presentation.
Asunto(s)
Tejido Adiposo/patología , Neoplasias de la Mama/patología , Ácidos Grasos Omega-3/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Tejido Adiposo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , PronósticoRESUMEN
Protein farnesylation is a post-translational modification regulated by the ERA1 (Enhanced Response to ABA 1) gene encoding the ß-subunit of the protein farnesyltransferase in Arabidopsis. The era1 mutants have been described for over two decades and exhibit severe pleiotropic phenotypes, affecting vegetative and flower development. We further investigated the development and quality of era1 seeds. While the era1 ovary contains numerous ovules, the plant produces fewer seeds but larger and heavier, with higher protein contents and a modified fatty acid distribution. Furthermore, era1 pollen grains show lower germination rates and, at flower opening, the pistils are immature and the ovules require one additional day to complete the embryo sac. Hand pollinated flowers confirmed that pollination is a major obstacle to era1 seed phenotypes, and a near wild-type seed morphology was thus restored. Still, era1 seeds conserved peculiar storage protein contents and altered fatty acid distributions. The multiplicity of era1 phenotypes reflects the diversity of proteins targeted by the farnesyltransferase. Our work highlights the involvement of protein farnesylation in seed development and in the control of traits of agronomic interest.
RESUMEN
In the present study, we investigated various biochemical, clinical, and histological factors associated with bone metastases in a large cohort of pre- and postmenopausal women with breast cancer. Two hundred and sixty-one consecutive women with breast cancer were included in this study. Breast adipose tissue specimens were collected during surgery. After having established the fatty acid profile of breast adipose tissue by gas chromatography, we determined whether there were differences associated with the occurrence of bone metastases in these patients. Regarding the clinical and histological criteria, a majority of the patients with bone metastases (around 70%) had tumors with a luminal phenotype and 59% of them showed axillary lymph node involvement. Moreover, we found a negative association between the levels of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in breast adipose tissue and the development of bone metastases in premenopausal women. No significant association was observed in postmenopausal women. In addition to a luminal phenotype and axillary lymph node involvement, low levels of n-3 LC-PUFA in breast adipose tissue may constitute a risk factor that contributes to breast cancer bone metastases formation in premenopausal women.
Asunto(s)
Tejido Adiposo/metabolismo , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Ácidos Grasos Omega-3/metabolismo , Premenopausia/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Cromatografía de Gases , Femenino , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Fenotipo , Posmenopausia/metabolismo , Estudios Retrospectivos , Factores de RiesgoRESUMEN
Lipids such as cholesterol, triacylglycerols, and fatty acids play important roles in the regulation of cellular metabolism and cellular signaling pathways and, as a consequence, in the development of various diseases. It is therefore important to understand how their metabolism is regulated to better define the components involved in the development of various human diseases. In the present work, we describe the development and validation of a high-performance thin layer chromatography (HPTLC) method allowing the separation and quantification of free cholesterol, cholesteryl esters, nonesterified fatty acids, and triacylglycerols. This method will be of interest as the quantification of these lipids in one single assay is difficult to perform.
Asunto(s)
Mama/química , Lípidos/análisis , Extractos de Tejidos/química , Mama/patología , Línea Celular Tumoral , Colesterol/análisis , Ésteres del Colesterol/análisis , Cromatografía en Capa Delgada , Ácidos Grasos no Esterificados/análisis , Humanos , Células MCF-7 , Triglicéridos/análisisRESUMEN
BACKGROUND: The highest incidence of breast cancer is in the Western world. Several aspects of the Western lifestyle are known risk factors for breast cancer. In particular, previous studies have shown that cholesterol levels can play an important role in the regulation of tumor progression. METHODS: In the present study, we modulated cholesterol metabolism in the human breast cancer cell lines MCF-7 and MDA-MB-231 using a genetic approach. Apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE) were expressed in these cell lines to modulate cholesterol metabolism. The effects of these apolipoproteins on cancer cell properties were examined. RESULTS: Our results show that both apolipoproteins can regulate cholesterol metabolism and can control the epithelial-to-mesenchymal transition process. However, these effects were different depending on the cell type. We show that expressing apoA-I or apoE stimulates proliferation, migration, and tumor growth of MCF-7 cells. However, apoA-I or apoE reduces proliferation and migration of MDA-MB-231 cells. CONCLUSIONS: These data suggest that modulating sterol metabolism may be most effective at limiting tumor progression in models of triple-negative cancers.
Asunto(s)
Apolipoproteína A-I/metabolismo , Apolipoproteínas E/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Colesterol/metabolismo , Metabolismo de los Lípidos , Animales , Neoplasias de la Mama/clasificación , Línea Celular Tumoral , Movimiento Celular , Bases de Datos Genéticas , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Ratones Desnudos , Tasa de Supervivencia , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Natural O-alkyl-glycerolipids, also known as alkyl-ether-lipids (AEL), feature a long fatty alkyl chain linked to the glycerol unit by an ether bond. AEL are ubiquitously found in different tissues but, are abundant in shark liver oil, breast milk, red blood cells, blood plasma, and bone marrow. Only a few AEL are commercially available, while many others with saturated or mono-unsaturated alkyl chains of variable length are not available. These compounds are, however, necessary as standards for analytical methods. Here, we investigated different reported procedures and we adapted some of them to prepare a series of 1-O-alkyl-glycerols featuring mainly saturated alkyl chains of various lengths (14:0, 16:0, 17:0, 19:0, 20:0, 22:0) and two monounsaturated chains (16:1, 18:1). All of these standards were fully characterized by NMR and GC-MS. Finally, we used these standards to identify the AEL subtypes in shark and chimera liver oils. The distribution of the identified AEL were: 14:0 (20-24%), 16:0 (42-54%) and 18:1 (6-16%) and, to a lesser extent, (0.2-2%) for each of the following: 16:1, 17:0, 18:0, and 20:0. These standards open the possibilities to identify AEL subtypes in tumours and compare their composition to those of non-tumour tissues.
Asunto(s)
Cromatografía de Gases/normas , Aceites de Pescado/química , Glicéridos/síntesis química , Hígado/química , Tiburones , AnimalesRESUMEN
BACKGROUND: Genetic and nutritional factors have been linked to the risk of aggressive prostate cancer (PCa). The fatty acid (FA) composition of peri-prostatic adipose tissue (PPAT), which reflects the past FA intake, is potentially involved in PCa progression. We analysed the FA composition of PPAT, in correlation with the ethno-geographical origin of the patients and markers of tumour aggressiveness. METHODS: From a cohort of 1000 men treated for PCa by radical prostatectomy, FA composition of PPAT was analysed in 156 patients (106 Caucasians and 50 African-Caribbeans), 78 with an indolent tumour (ISUP group 1 + pT2 + PSA <10 ng/mL) and 78 with an aggressive tumour (ISUP group 4-5 + pT3). The effect of FA extracted from PPAT on in-vitro migration of PCa cells DU145 was studied in 72 patients, 36 Caucasians, and 36 African-Caribbeans. RESULTS: FA composition differed according to the ethno-geographical origin. Linoleic acid, an essential n-6 FA, was 2-fold higher in African-Caribbeans compared with Caucasian patients, regardless of disease aggressiveness. In African-Caribbeans, the FA profile associated with PCa aggressiveness was characterised by low level of linoleic acid along with high levels of saturates. In Caucasians, a weak and negative association was observed between eicosapentaenoic acid level (an n-3 FA) and disease aggressiveness. In-vitro migration of PCa cells using PPAT from African-Caribbean patients was associated with lower content of linoleic acid. CONCLUSION: These results highlight an important ethno-geographical variation of PPAT, in both their FA content and association with tumour aggressiveness.
Asunto(s)
Tejido Adiposo/metabolismo , Población Negra , Movimiento Celular , Ácidos Grasos/metabolismo , Neoplasias de la Próstata/química , Población Blanca , Tejido Adiposo/patología , Anciano , Línea Celular Tumoral , Bases de Datos Factuales , Ácido Eicosapentaenoico/metabolismo , Francia/epidemiología , Humanos , Ácido Linoleico/metabolismo , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Comunicación Paracrina , Prostatectomía , Neoplasias de la Próstata/etnología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Transducción de Señal , Indias Occidentales/epidemiologíaRESUMEN
Cardiolipin (CL) is a unique mitochondrial phospholipid potentially affecting many aspects of mitochondrial function/processes, i.e. energy production through oxidative phosphorylation. Most data focusing on implication of CL content and mitochondrial bioenergetics were performed in yeast or in cellular models of Barth syndrome. Previous work reported that increase in CL content leads to decrease in liver mitochondrial ATP synthesis yield. Therefore the aim of this study was to determine the effects of moderate decrease in CL content on mitochondrial bioenergetics in human hepatocytes. For this purpose, we generated a cardiolipin synthase knockdown (shCLS) in HepaRG hepatoma cells showing bioenergetics features similar to primary human hepatocytes. shCLS cells exhibited a 55% reduction in CLS gene and a 40% decrease in protein expression resulting in a 45% lower content in CL compared to control (shCTL) cells. Oxygen consumption was significantly reduced in shCLS cells compared to shCTL regardless of substrate used and energy state analyzed. Mitochondrial low molecular weight supercomplex content was higher in shCLS cells (+60%) compared to shCTL. Significant fragmentation of the mitochondrial network was observed in shCLS cells compared to shCTL cells. Surprisingly, mitochondrial ATP synthesis was unchanged in shCLS compared to shCTL cells but exhibited a higher ATP:O ratio (+46%) in shCLS cells. Our results suggest that lowered respiratory chain activity induced by moderate reduction in CL content may be due to both destabilization of supercomplexes and mitochondrial network fragmentation. In addition, CL content may regulate mitochondrial ATP synthesis yield.
Asunto(s)
Adenosina Trifosfato/biosíntesis , Cardiolipinas/análisis , Transporte de Electrón , Hepatocitos/metabolismo , Células Cultivadas , Metabolismo Energético , Humanos , Mitocondrias/metabolismoRESUMEN
Taxanes can induce drug resistance by increasing signaling pathways such as PI3K/Akt and ERK, which promote survival and cell growth in human cancer cells. We have previously shown that long chain n-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA, 22:6n-3) decrease resistance of experimental mammary tumors to anticancer drugs. Our objective was to determine whether DHA could increase tumor sensitivity to docetaxel by down-regulating these survival pathways. In docetaxel-treated MDA-MB-231 cells, phosphorylated-ERK1/2 levels were increased by 60% in membrane and nuclear compartments, compared to untreated cells. Our data showed that ERK1/2 activation depended on PKC activation since: i) enzastaurin (a pan-PKC inhibitor) blocked docetaxel-induced ERK1/2 phosphorylation ii) docetaxel increased PKC activity by 30% and phosphatidic acid level by 1.6-fold iii) inhibition of PKCε and PKCδ by siRNA resulted in reduced phosphorylated ERK1/2 levels. In DHA-supplemented cells, docetaxel was unable to increase PKCε and δ levels in membrane and nuclear fractions, resulting in diminished ERK1/2 phosphorylation and increased docetaxel efficacy. Reduced membrane level of PKCε and PKCδ was associated with significant incorporation of DHA in all phospholipids, including phosphatidylcholine which is a major source of phosphatidic acid. Additionally, examination of the Akt pathway showed that DHA could repress docetaxel-induced Ser473Akt phosphorylation. In rat mammary tumors, dietary DHA supplementation during docetaxel chemotherapy repressed ERK and Akt survival pathways and in turn strongly improved taxane efficacy. The P-ERK level was negatively correlated with tumor regression. These findings are of potential clinical importance in treating chemotherapy-refractory cancer.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Taxoides/farmacología , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Docetaxel , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática , Femenino , Humanos , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/patología , Metilnitrosourea , Fosforilación , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Proteína Quinasa C-epsilon/antagonistas & inhibidores , Proteína Quinasa C-epsilon/genética , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacosRESUMEN
Cardiolipin (CL) content accumulation leads to an increase in energy wasting in liver mitochondria in a rat model of cancer cachexia in which tumor necrosis factor alpha (TNFα) is highly expressed. In this study we investigated the mechanisms involved in liver mitochondria CL accumulation in cancer cachexia and examined if TNFα was involved in this process leading to mitochondrial bioenergetics alterations. We studied gene, protein expression and activity of the main enzymes involved in CL metabolism in liver mitochondria from a rat model of cancer cachexia and in HepaRG hepatocyte-like cells exposed to 20 ng/ml of TNFα for 12 h. Phosphatidylglycerolphosphate synthase (PGPS) gene expression was increased 2.3-fold (p<0.02) and cardiolipin synthase (CLS) activity decreased 44% (p<0.03) in cachectic rat livers compared to controls. CL remodeling enzymes monolysocardiolipin acyltransferase (MLCL AT-1) activity and tafazzin (TAZ) gene expression were increased 30% (p<0.01) and 50% (p<0.02), respectively, in cachectic rat livers compared to controls. Incubation of hepatocytes with TNFα increased CL content 15% (p<0.05), mitochondrial oxygen consumption 33% (p<0.05), PGPS gene expression 44% (p<0.05) and MLCL AT-1 activity 20% (p<0.05) compared to controls. These above findings strongly suggest that in cancer cachexia, TNFα induces a higher energy wasting in liver mitochondria by increasing CL content via upregulation of PGPS expression.
Asunto(s)
Caquexia/metabolismo , Cardiolipinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Hepatocitos/metabolismo , Neoplasias Peritoneales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Caquexia/genética , Caquexia/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología , Ratas , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse.