Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39252897

RESUMEN

ZNHIT3 (zinc finger HIT type containing protein 3) is an evolutionarily conserved protein required for ribosome biogenesis by mediating the assembly of small nucleolar RNAs (snoRNAs) of class C/D into ribonucleoprotein complexes (snoRNPs). Missense mutations in the gene encoding ZNHIT3 protein have been previously reported to cause PEHO syndrome, a severe neurodevelopmental disorder typically presenting after birth. We discuss here the case of two fetuses from a single family who presented with isolated hydrops during the early second trimester of pregnancy, resulting in intrauterine demise. Autopsy revealed no associated malformation. Through whole-genome quartet analysis, we identified two novel variants within the ZNHIT3 gene, both inherited from healthy parents and occurring as compound heterozygotes in both fetuses. The c.40T>C p.Cys14Arg variant originated from the father, while the c.251_254delAAGA variant was of maternal origin. Analysis of the variants in human cell culture models reveals that both variants reduce cell growth, albeit to different extents, and impact the protein's stability and function in distinct ways. The c.251_254delAAGA results in production of a stable form of ZNHIT3 that lacks a domain required for mediating snoRNP biogenesis, whereas the c.40T>C p.Cys14Arg variation behaves similarly to the previously described PEHO-associated ZNHIT3 variants that destabilize the protein. Interestingly, both variations lead to a marked decrease in specific box C/D snoRNA levels, reduced rRNA levels and cellular translation. Analysis of rRNA methylation pattern in fetus samples reveals distinct sites of hypo 2'-O-methylation. RNA-seq analysis of undifferentiated and differentiated SHSY5Y cells transfected with the ZNHIT3 variants reveals differential expression of a set of genes, many of which are associated with developmental processes and RNA binding compared to cells expressing wild-type ZNHIT3. In summary, this work extends the phenotype of PEHO syndrome to include antenatal manifestations and describe the molecular defects induced by two novel ZNHIT3 variants.

2.
AJOG Glob Rep ; 4(1): 100321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38586611

RESUMEN

Preeclampsia is a syndrome with multiple etiologies. The diagnosis can be made without proteinuria in the presence of dysfunction of at least 1 organ associated with hypertension. The common pathophysiological pathway includes endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. There is evidence to support, among others, immunologic causes of preeclampsia. Unlike defense immunology, reproductive immunology is not based on immunologic recognition systems of self/non-self and missing-self but on immunotolerance and maternal-fetal cellular interactions. The main mechanisms of immune escape from fetal to maternal immunity at the maternal-fetal interface are a reduction in the expression of major histocompatibility complex molecules by trophoblast cells, the presence of complement regulators, increased production of indoleamine 2,3-dioxygenase, activation of regulatory T cells, and an increase in immune checkpoints. These immune protections are more similar to the immune responses observed in tumor biology than in allograft biology. The role of immune and nonimmune decidual cells is critical for the regulation of trophoblast invasion and vascular remodeling of the uterine spiral arteries. Regulatory T cells have been found to play an important role in suppressing the effectiveness of other T cells and contributing to local immunotolerance. Decidual natural killer cells have a cytokine profile that is favored by the presence of HLA-G and HLA-E and contributes to vascular remodeling. Studies on the evolution of mammals show that HLA-E, HLA-G, and HLA-C1/C2, which are expressed by trophoblasts and their cognate receptors on decidual natural killer cells, are necessary for the development of a hemochorial placenta with vascular remodeling. The activation or inhibition of decidual natural killer cells depends on the different possible combinations between killer cell immunoglobulin-like receptors, expressed by uterine natural killer cells, and the HLA-C1/C2 antigens, expressed by trophoblasts. Polarization of decidual macrophages in phenotype 2 and decidualization of stromal cells are also essential for high-quality vascular remodeling. Knowledge of the various immunologic mechanisms required for adequate vascular remodeling and their dysfunction in case of preeclampsia opens new avenues of research to identify novel biological markers or therapeutic targets to predict or prevent the onset of preeclampsia.

3.
Nat Cell Biol ; 26(5): 698-709, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548890

RESUMEN

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.


Asunto(s)
Linaje de la Célula , Neocórtex , Células-Madre Neurales , Neurogénesis , Organoides , Humanos , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Organoides/citología , Organoides/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , División Celular , Proliferación Celular
4.
Brain ; 147(1): 91-99, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37804319

RESUMEN

Pathogenic variants in the MFN2 gene are commonly associated with autosomal dominant (CMT2A2A) or recessive (CMT2A2B) Charcot-Marie-Tooth disease, with possible involvement of the CNS. Here, we present a case of severe antenatal encephalopathy with lissencephaly, polymicrogyria and cerebellar atrophy. Whole genome analysis revealed a homozygous deletion c.1717-274_1734 del (NM_014874.4) in the MFN2 gene, leading to exon 16 skipping and in-frame loss of 50 amino acids (p.Gln574_Val624del), removing the proline-rich domain and the transmembrane domain 1 (TM1). MFN2 is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial fusion, shaping large mitochondrial networks within cells. In silico modelling showed that the loss of the TM1 domain resulted in a drastically altered topological insertion of the protein in the mitochondrial outer membrane. Fetus fibroblasts, investigated by fluorescent cell imaging, electron microscopy and time-lapse recording, showed a sharp alteration of the mitochondrial network, with clumped mitochondria and clusters of tethered mitochondria unable to fuse. Multiple deficiencies of respiratory chain complexes with severe impairment of complex I were also evidenced in patient fibroblasts, without involvement of mitochondrial DNA instability. This is the first reported case of a severe developmental defect due to MFN2 deficiency with clumped mitochondria.


Asunto(s)
Encefalopatías , Enfermedad de Charcot-Marie-Tooth , Embarazo , Humanos , Femenino , Homocigoto , Mutación/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Eliminación de Secuencia , Mitocondrias/metabolismo , Encefalopatías/genética , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
5.
Clin Genet ; 104(5): 587-592, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37431644

RESUMEN

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through whole-exome sequencing combined with arrayCGH from DNA of a fetus presenting with early onset AMC, we identified biallelic loss of function variants in Dystonin (DST): a stop gain variant (NM_001144769.5:c.12208G > T:p.(Glu4070Ter)) on the neuronal isoform and a 175 kb microdeletion including exons 25-96 of this isoform on the other allele [NC_000006.11:g.(56212278_56323554)_(56499398_56507586)del]. Transmission electron microscopy of the sciatic nerve revealed abnormal morphology of the peripheral nerve with severe hypomyelination associated with dramatic reduction of fiber density which highlights the critical role of DST in peripheral nerve axonogenesis during development in human. Variants in the neuronal isoforms of DST cause hereditary sensory and autonomic neuropathy which has been reported in several unrelated families with highly variable age of onset from fetal to adult onset. Our data enlarge the disease mechanisms of neurogenic AMC.


Asunto(s)
Artrogriposis , Neuropatías Hereditarias Sensoriales y Autónomas , Adulto , Humanos , Embarazo , Femenino , Artrogriposis/diagnóstico , Artrogriposis/genética , Distonina/genética , Isoformas de Proteínas
6.
Cell Rep ; 42(6): 112618, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294633

RESUMEN

Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.


Asunto(s)
Células Madre Hematopoyéticas , Linfopoyesis , Adulto , Humanos , Anciano , Diferenciación Celular , Linaje de la Célula , Hematopoyesis
8.
Hum Mutat ; 43(3): 347-361, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35005812

RESUMEN

We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.


Asunto(s)
Enfermedades Renales , Riñón Poliquístico Autosómico Dominante , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Femenino , Feto/anomalías , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Riñón/anomalías , Enfermedades Renales/congénito , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Masculino , Mutación , Riñón Poliquístico Autosómico Dominante/genética
9.
Emerg Infect Dis ; 28(2): 445-448, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35076005

RESUMEN

We report a case of vertical transmission of Tonate virus in a pregnant woman from French Guiana. The fetus showed severe necrotic and hemorrhagic lesions of the brain and spinal cord. Clinicians should be made aware of possible adverse fetal outcomes in pregnant women infected with Tonate virus.


Asunto(s)
Alphavirus , Encéfalo , Femenino , Guyana Francesa/epidemiología , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Embarazo
10.
J Med Genet ; 59(6): 559-567, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820833

RESUMEN

BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


Asunto(s)
Artrogriposis , Artrogriposis/diagnóstico , Artrogriposis/genética , Artrogriposis/patología , Genómica , Humanos , Linaje , Fenotipo , Proteínas/genética , Factores de Transcripción/genética , Secuenciación del Exoma
11.
Clin Case Rep ; 9(9): e04838, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34584710

RESUMEN

Testing the partner of a BRCA2 carrier must always be discussed. If both members of the couple are BRCA2 carriers, they should be informed about the high risks of polymalformative syndromes.

12.
Acta Neuropathol ; 142(4): 761-776, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347142

RESUMEN

Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.


Asunto(s)
Cerebelo/anomalías , Síndrome de Dandy-Walker/embriología , Síndrome de Dandy-Walker/patología , Desarrollo Fetal/fisiología , Feto/patología , Malformaciones del Sistema Nervioso/embriología , Malformaciones del Sistema Nervioso/patología , Estudios de Casos y Controles , Cerebelo/embriología , Cerebelo/patología , Discapacidades del Desarrollo/patología , Humanos , Recién Nacido
13.
Eur J Med Genet ; 64(9): 104282, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34284163

RESUMEN

The Forkhead transcription factor FOXG1 is a prerequisite for telencephalon development in mammals and is an essential factor controlling expansion of the dorsal telencephalon by promoting neuron and interneuron production. Heterozygous FOXG1 gene mutations cause FOXG1 syndrome characterized by severe intellectual disability, motor delay, dyskinetic movements and epilepsy. Neuroimaging studies in patients disclose constant features including microcephaly, corpus callosum dysgenesis and delayed myelination. Currently, investigative research on the underlying pathophysiology relies on mouse models only and indicates that de-repression of FOXG1 target genes may cause premature neuronal differentiation at the expense of the progenitor pool, patterning and migration defects with impaired formation of cortico-cortical projections. It remains an open question to which extent this recapitulates the neurodevelopmental pathophysiology in FOXG1-haploinsufficient patients. To close this gap, we performed neuropathological analyses in two foetal cases with FOXG1 premature stop codon mutations interrupted during the third trimester of the pregnancy for microcephaly and corpus callosum dysgenesis. In these foetuses, we observed cortical lamination defects and decreased neuronal density mainly affecting layers II, III and V that normally give rise to cortico-cortical and inter-hemispheric axonal projections. GABAergic interneurons were also reduced in number in the cortical plate and persisting germinative zones. Additionally, we observed more numerous PDGFRα-positive oligodendrocyte precursor cells and fewer Olig2-positive pre-oligodendrocytes compared to age-matched control brains, arguing for delayed production and differentiation of oligodendrocyte lineage leading to delayed myelination. These findings provide key insights into the human pathophysiology of FOXG1 syndrome.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Axones/patología , Factores de Transcripción Forkhead/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Neurogénesis , Oligodendroglía/patología , Feto Abortado/metabolismo , Feto Abortado/patología , Adulto , Agenesia del Cuerpo Calloso/patología , Axones/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Encéfalo/patología , Codón sin Sentido , Femenino , Factores de Transcripción Forkhead/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Microcefalia/patología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Trastornos del Neurodesarrollo/patología , Oligodendroglía/metabolismo , Linaje , Embarazo , Síndrome
14.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019079

RESUMEN

Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown. Using subcellular live imaging within brain tissue, we show that microtubules in the apical process uniformly emanate for the pericentrosomal region, while microtubules in the basal fiber display a mixed polarity, reminiscent of the mammalian dendrite. We identify acentrosomal microtubule organizing centers localized in varicosities of the basal fiber. CAMSAP family members accumulate in these varicosities, where they control microtubule growth. Double knockdown of CAMSAP1 and 2 leads to a destabilization of the entire basal process. Finally, using live imaging of human fetal cortex, we reveal that this organization is conserved in basal radial glial cells, a related progenitor cell population associated with human brain size expansion.


Asunto(s)
Células Ependimogliales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Linaje de la Célula , Movimiento Celular , Edad Gestacional , Humanos , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Neocórtex/embriología , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo
15.
J Clin Invest ; 131(6)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33497358

RESUMEN

Hirschsprung disease (HSCR) is the most frequent developmental anomaly of the enteric nervous system, with an incidence of 1 in 5000 live births. Chronic intestinal pseudo-obstruction (CIPO) is less frequent and classified as neurogenic or myogenic. Isolated HSCR has an oligogenic inheritance with RET as the major disease-causing gene, while CIPO is genetically heterogeneous, caused by mutations in smooth muscle-specific genes. Here, we describe a series of patients with developmental disorders including gastrointestinal dysmotility, and investigate the underlying molecular bases. Trio-exome sequencing led to the identification of biallelic variants in ERBB3 and ERBB2 in 8 individuals variably associating HSCR, CIPO, peripheral neuropathy, and arthrogryposis. Thorough gut histology revealed aganglionosis, hypoganglionosis, and intestinal smooth muscle abnormalities. The cell type-specific ErbB3 and ErbB2 function was further analyzed in mouse single-cell RNA sequencing data and in a conditional ErbB3-deficient mouse model, revealing a primary role for ERBB3 in enteric progenitors. The consequences of the identified variants were evaluated using quantitative real-time PCR (RT-qPCR) on patient-derived fibroblasts or immunoblot assays on Neuro-2a cells overexpressing WT or mutant proteins, revealing either decreased expression or altered phosphorylation of the mutant receptors. Our results demonstrate that dysregulation of ERBB3 or ERBB2 leads to a broad spectrum of developmental anomalies, including intestinal dysmotility.


Asunto(s)
Discapacidades del Desarrollo/genética , Seudoobstrucción Intestinal/genética , Mutación , Neurregulina-1/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Adolescente , Animales , Preescolar , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Femenino , Motilidad Gastrointestinal/genética , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Humanos , Recién Nacido , Seudoobstrucción Intestinal/patología , Masculino , Ratones , Modelos Moleculares , Linaje , Fenotipo , Embarazo , Receptor ErbB-2/química , Receptor ErbB-3/química , Receptor ErbB-3/deficiencia
17.
Front Immunol ; 11: 579776, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329550

RESUMEN

Mechanisms driving acute graft-versus-host disease (aGVHD) onset in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) are still poorly understood. To provide a detailed characterization of tissue-infiltrating T lymphocytes (TL) and search for eventual site-specific specificities, we developed a xenogeneic model of aGVHD in immunodeficient mice. Phenotypic characterization of xenoreactive T lymphocytes (TL) in diseased mice disclosed a massive infiltration of GVHD target organs by an original CD4+CD8+ TL subset. Immunophenotypic and transcriptional profiling shows that CD4+CD8+ TL comprise a major PD1+CD62L-/+ transitional memory subset (>60%) characterized by low level expression of cytotoxicity-related transcripts. CD4+CD8+ TL produce high IL-10 and IL-13 levels, and low IL-2 and IFN-γ, suggestive of regulatory function. In vivo tracking of genetically labeled CD4+ or CD8+ TL subsequently found that CD4+CD8+ TL mainly originate from chronically activated cytotoxic TL (CTL). On the other hand, phenotypic profiling of CD3+ TL from blood, duodenum or rectal mucosa in a cohort of allo-HSCT patients failed to disclose abnormal expansion of CD4+CD8+ TL independent of aGVHD development. Collectively, our results show that acquisition of surface CD4 by xenoreactive CD8+ CTL is associated with functional diversion toward a regulatory phenotype, but rule out a central role of this subset in the pathogenesis of aGVHD in allo-HSCT patients.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Linfocitos T Citotóxicos/inmunología , Animales , Citocinas/metabolismo , Femenino , Humanos , Memoria Inmunológica , Masculino , Ratones , Ratones SCID , Receptor de Muerte Celular Programada 1/metabolismo , Trasplante Heterólogo
18.
J Gynecol Obstet Hum Reprod ; 49(9): 101880, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32755668

RESUMEN

OBJECTIVE: To assess the feasibility of 3D modelisation of fetal anatomy by using the Computer-assisted anatomic dissection (CAAD) based on immunolabeled histologic slices and MRI slices with a specific 3D software. STUDY DESIGN: For pelvis and lower limbs, subjects came from legal abortion, medical pregnancy termination, or late miscarriage. Specimens were fixed in 10 % formalin, then embedded in paraffin wax and serially sectioned. The histological slices were stained using HES and Masson Trichrome. Protein S-100 and D2-40 markers were used for immuno-labelling. Serial transverse sections were digitalized and manually aligned. Fetal brain slices were obtained from in utero or post-mortem MRI. RESULTS: CAAD was performed on 10 fetuses: pelvis was modelised with 3 fetuses of 13, 15 and 24 W G, lower limbs with 2 fetuses of 14 and 15 W G and brain with 5 fetuses aged between 19 and 37 W G. Fetal pelvis innervation was analysed after immunolabelling and nerves appeared proportionally bigger than in adults with the same topography. Lower limbs analysis revealed that nerve development was guided by vascular development: the sciatic nerve along the big axial vein, the saphen nerve along the big saphen vein and the sural nerve along the small saphen vein. Fetal brain study allowed to describe the gyration process and the lateral ventricle development. CONCLUSION: CAAD technique provides an accurate 3D reconstruction of fetal anatomy for lower limbs and pelvis but has to be improved for brain model since midline structures were not amendable for analysis. These results need to be confirmed with larger series of specimens at different stages of development.


Asunto(s)
Atlas como Asunto , Estudios de Factibilidad , Feto/anatomía & histología , Feto/embriología , Imagenología Tridimensional/métodos , Autopsia , Encéfalo/embriología , Disección , Edad Gestacional , Humanos , Extremidad Inferior/irrigación sanguínea , Extremidad Inferior/embriología , Imagen por Resonancia Magnética , Microtomía , Morfogénesis , Adhesión en Parafina , Pelvis/embriología , Interfaz Usuario-Computador
19.
Dev Cell ; 54(1): 43-59.e4, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32634398

RESUMEN

The meninges are a multilayered structure composed of fibroblasts, blood and lymphatic vessels, and immune cells. Meningeal fibroblasts secrete a variety of factors that control CNS development, yet strikingly little is known about their heterogeneity or development. Using single-cell sequencing, we report distinct transcriptional signatures for fibroblasts in the embryonic dura, arachnoid, and pia. We define new markers for meningeal layers and show conservation in human meninges. We find that embryonic meningeal fibroblasts are transcriptionally distinct between brain regions and identify a regionally localized pial subpopulation marked by the expression of µ-crystallin. Developmental analysis reveals a progressive, ventral-to-dorsal maturation of telencephalic meninges. Our studies have generated an unparalleled view of meningeal fibroblasts, providing molecular profiles of embryonic meningeal fibroblasts by layer and yielding insights into the mechanisms of meninges development and function.


Asunto(s)
Encéfalo/metabolismo , Fibroblastos/metabolismo , Meninges/metabolismo , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/embriología , Cristalinas/genética , Cristalinas/metabolismo , Humanos , Meninges/citología , Meninges/embriología , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Análisis de la Célula Individual
20.
Am J Surg Pathol ; 44(10): 1389-1397, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32604166

RESUMEN

Hirschsprung disease (HD) is a congenital disorder of the enteric nervous system that occurs in ∼1 in 5000 live births. It is characterized by the absence of ganglionic cells (GCs) in the distal intestine. The diagnosis relies on the thorough analysis of a rectal suction biopsy (RSB), which must show a complete absence of GCs after careful examination of at least 100 serial sections. Such a negative characteristic explains the difficulty of this diagnosis. Moreover, GCs may be immature in very young or preterm born children, making them hard to recognize. Therefore, ancillary techniques have been developed as diagnostic help, such as acetylcholinesterase histochemistry and calretinin immunostaining. These techniques reveal only indirect clues, focusing mainly on the changes in nerve fibers, but not on GCs themselves. As PHOX2B has been shown to be a very specific transcription factor in GCs and in progenitor enteric nerve cells, we have assessed (i) PHOX2B immunostaining in immature enteric ganglia and (ii) the use of PHOX2B immunostaining for the recognition of GCs on RSBs for suspicion of HD. We have observed PHOX2B expression in all GCs, both mature and immature, and its complete absence in Hirschsprung cases. We suggest that the use of PHOX2B immunostaining is of great help (i) in the recognition of GCs on RSBs regardless of their differentiation and therefore (ii) in the diagnosis of HD.


Asunto(s)
Biomarcadores/análisis , Sistema Nervioso Entérico/patología , Enfermedad de Hirschsprung/diagnóstico , Proteínas de Homeodominio/análisis , Factores de Transcripción/análisis , Femenino , Feto , Enfermedad de Hirschsprung/patología , Proteínas de Homeodominio/biosíntesis , Humanos , Inmunohistoquímica/métodos , Recién Nacido , Masculino , Factores de Transcripción/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...