Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 327(3): C557-C570, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985989

RESUMEN

The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.


Asunto(s)
Potenciales de Acción , Factores de Intercambio de Guanina Nucleótido , Ventrículos Cardíacos , Miocitos Cardíacos , Proteína Quinasa C , Transducción de Señal , Animales , Factores de Intercambio de Guanina Nucleótido/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Proteína Quinasa C/metabolismo , Ratas , Potenciales de Acción/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores , Masculino , Ratas Wistar , Potasio/metabolismo , AMP Cíclico/metabolismo
2.
J Clin Med ; 12(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762794

RESUMEN

Thoracic radiation therapy may result in accelerated atherosclerosis and in late aortic valve stenosis (AS). In this study, we assessed the feasibility of inducing radiation-induced AS using a targeted aortic valve irradiation (10 or 20 Grays) in two groups of C57Bl6/J (WT) and ApoE-/- mice compared to a control (no irradiation). Peak aortic jet velocity was evaluated by echocardiography to characterize AS. T2*-weighted magnetic resonance imaging after injection of MPIO-αVCAM-1 was used to examine aortic inflammation resulting from irradiation. A T2* signal void on valve leaflets and aortic sinus was considered positive. Valve remodeling and mineralization were assessed using von Kossa staining. Finally, the impact of radiation on cell viability and cycle from aortic human valvular interstitial cells (hVICs) was also assessed. The targeted aortic valve irradiation in ApoE-/- mice resulted in an AS characterized by an increase in peak aortic jet velocity associated with valve leaflet and aortic sinus remodeling, including mineralization process, at the 3-month follow-up. There was a linear correlation between histological findings and peak aortic jet velocity (r = 0.57, p < 0.01). In addition, irradiation was associated with aortic root inflammation, evidenced by molecular MR imaging (p < 0.01). No significant effect of radiation exposure was detected on WT animals. Radiation exposure did not affect hVICs viability and cell cycle. We conclude that targeted radiation exposure of the aortic valve in mice results in ApoE-/-, but not in WT, mice in an aortic valve remodeling mimicking the human lesions. This preclinical model could be a useful tool for future assessment of therapeutic interventions.

3.
Cells ; 12(12)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371124

RESUMEN

The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel that is mostly permeable to calcium (Ca2+), which participates in intracellular Ca2+ handling in cardiac cells. It is widely expressed through the body and is activated by a large spectrum of physicochemical stimuli, conferring it a role in a variety of sensorial and physiological functions. Within the cardiovascular system, TRPV4 expression is reported in cardiomyocytes, endothelial cells (ECs) and smooth muscle cells (SMCs), where it modulates mitochondrial activity, Ca2+ homeostasis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction. On the other hand, TRPV4 channels participate in several cardiac pathological processes such as the development of cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia. In this manuscript, we provide an overview of TRPV4 channel implications in cardiac physiology and discuss the potential of the TRPV4 channel as a therapeutic target against cardiovascular diseases.


Asunto(s)
Infarto del Miocardio , Canales de Potencial de Receptor Transitorio , Femenino , Embarazo , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPV/metabolismo , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo
4.
Reproduction ; 166(2): 77-87, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204208

RESUMEN

In brief: Inappropriate uterine contractions are a matter of concern during pregnancy or menses. We identified the transient receptor potential melastatin 4 (TRPM4) ion channel as a new actor in mouse uterine contractions highlighting this protein as a potential pharmacological target for a better control of myometrial activity. Abstract: Control of uterine contractions is of interest in the context of inappropriate myometrial activity during pregnancy and at time of delivery, but it is also a matter for menstrual pain. While several molecular determinants of myometrial contractions have been described, the complete distribution of roles to the various actors is far from understood. A key phenomenon is a variation in cytoplasmic Ca2+ which leads to the activation of calmodulin in smooth muscle and also in the phosphorylation of myosin allowing contraction. The Ca2+ - TRPM4 channel which is known to modulate Ca2+- fluxes in several cell types was shown to participate in vascular as well as detrusor muscle contraction. We thus designed a study to determine whether it also participates in myometrial contraction. Uterine rings were isolated from Trpm4+/+ and Trpm4-/- non-pregnant adult mice and contractions were recorded using an isometric force transducer. In basal conditions, spontaneous contractions were similar in both groups. Application of 9-phenanthrol, a pharmacological TRPM4 inhibitor, dose-dependently reduced contraction parameters in Trpm4+/+ rings with an IC50 around 2.10-6 mol/L. The effect of 9-phenanthrol was significantly reduced in Trpm4-/- rings. The effect of oxytocin was tested and was found to be stronger in Trpm4+/+ rings compared to Trpm4-/-. Under a constant stimulation by oxytocin, 9-phenanthrol still reduced contraction parameters in Trpm4+/+ rings with a smaller effect on Trpm4-/-. Altogether it indicates that TRPM4 participates in uterine contractions in mice and may thus be evaluated as a new target to control such contractions.


Asunto(s)
Canales Catiónicos TRPM , Contracción Uterina , Femenino , Embarazo , Ratones , Animales , Calcio/metabolismo , Oxitocina/metabolismo , Canales Catiónicos TRPM/metabolismo , Miometrio/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982932

RESUMEN

The role of ion channels is extensively described in the context of the electrical activity of excitable cells and in excitation-contraction coupling. They are, through this phenomenon, a key element for cardiac activity and its dysfunction. They also participate in cardiac morphological remodeling, in particular in situations of hypertrophy. Alongside this, a new field of exploration concerns the role of ion channels in valve development and remodeling. Cardiac valves are important components in the coordinated functioning of the heart by ensuring unidirectional circulation essential to the good efficiency of the cardiac pump. In this review, we will focus on the ion channels involved in both the development and/or the pathological remodeling of the aortic valve. Regarding valve development, mutations in genes encoding for several ion channels have been observed in patients suffering from malformation, including the bicuspid aortic valve. Ion channels were also reported to be involved in the morphological remodeling of the valve, characterized by the development of fibrosis and calcification of the leaflets leading to aortic stenosis. The final stage of aortic stenosis requires, until now, the replacement of the valve. Thus, understanding the role of ion channels in the progression of aortic stenosis is an essential step in designing new therapeutic approaches in order to avoid valve replacement.


Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Humanos , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/patología , Fibrosis
6.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139640

RESUMEN

Thoracic radiotherapy can lead to cardiac remodeling including valvular stenosis due to fibrosis and calcification. The monovalent non-selective cation channel TRPM4 is known to be involved in calcium handling and to participate in fibroblast transition to myofibroblasts, a phenomenon observed during aortic valve stenosis. The goal of this study was to evaluate if TRPM4 is involved in irradiation-induced aortic valve damage. Four-month-old Trpm4+/+ and Trpm4-/- mice received 10 Gy irradiation at the aortic valve. Cardiac parameters were evaluated by echography until 5 months post-irradiation, then hearts were collected for morphological and histological assessments. At the onset of the protocol, Trpm4+/+ and Trpm4-/- mice exhibited similar maximal aortic valve jet velocity and mean pressure gradient. Five months after irradiation, Trpm4+/+ mice exhibited a significant increase in those parameters, compared to the untreated animals while no variation was detected in Trpm4-/- mice. Morphological analysis revealed that irradiated Trpm4+/+ mice exhibited a 53% significant increase in the aortic valve cusp surface while no significant variation was observed in Trpm4-/- animals. Collagen staining revealed aortic valve fibrosis in irradiated Trpm4+/+ mice but not in irradiated Trpm4-/- animals. It indicates that TRPM4 influences irradiation-induced valvular remodeling.

8.
Cells ; 10(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809210

RESUMEN

Aldosterone plays a major role in atrial structural and electrical remodeling, in particular through Ca2+-transient perturbations and shortening of the action potential. The Ca2+-activated non-selective cation channel Transient Receptor Potential Melastatin 4 (TRPM4) participates in atrial action potential. The aim of our study was to elucidate the interactions between aldosterone and TRPM4 in atrial remodeling and arrhythmias susceptibility. Hyperaldosteronemia, combined with a high salt diet, was induced in mice by subcutaneously implanted osmotic pumps during 4 weeks, delivering aldosterone or physiological serum for control animals. The experiments were conducted in wild type animals (Trpm4+/+) as well as Trpm4 knock-out animals (Trpm4-/-). The atrial diameter measured by echocardiography was higher in Trpm4-/- compared to Trpm4+/+ animals, and hyperaldosteronemia-salt produced a dilatation in both groups. Action potentials duration and triggered arrhythmias were measured using intracellular microelectrodes on the isolated left atrium. Hyperaldosteronemia-salt prolong action potential in Trpm4-/- mice but had no effect on Trpm4+/+ mice. In the control group (no aldosterone-salt treatment), no triggered arrythmias were recorded in Trpm4+/+ mice, but a high level was detected in Trpm4-/- mice. Hyperaldosteronemia-salt enhanced the occurrence of arrhythmias (early as well as delayed-afterdepolarization) in Trpm4+/+ mice but decreased it in Trpm4-/- animals. Atrial connexin43 immunolabelling indicated their disorganization at the intercalated disks and a redistribution at the lateral side induced by hyperaldosteronemia-salt but also by Trpm4 disruption. In addition, hyperaldosteronemia-salt produced pronounced atrial endothelial thickening in both groups. Altogether, our results indicated that hyperaldosteronemia-salt and TRPM4 participate in atrial electrical and structural remodeling. It appears that TRPM4 is involved in aldosterone-induced atrial action potential shortening. In addition, TRPM4 may promote aldosterone-induced atrial arrhythmias, however, the underlying mechanisms remain to be explored.


Asunto(s)
Arritmias Cardíacas/metabolismo , Función del Atrio Izquierdo , Remodelación Atrial , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción , Aldosterona , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Atrios Cardíacos/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Cloruro de Sodio Dietético , Canales Catiónicos TRPM/genética , Factores de Tiempo
9.
Am J Physiol Heart Circ Physiol ; 320(3): H1156-H1169, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33449852

RESUMEN

The TRPV4 channel is a calcium-permeable channel (PCa/PNa ∼ 10). Its expression has been reported in ventricular myocytes, where it is involved in several cardiac pathological mechanisms. In this study, we investigated the implication of TRPV4 in ventricular electrical activity. Left ventricular myocytes were isolated from trpv4+/+ and trpv4-/- mice. TRPV4 membrane expression and its colocalization with L-type calcium channels (Cav1.2) was confirmed using Western blot biotinylation, immunoprecipitation, and immunostaining experiments. Then, electrocardiograms (ECGs) and patch-clamp recordings showed shortened QTc and action potential (AP) duration in trpv4-/- compared with trpv4+/+ mice. Thus, TRPV4 activator GSK1016790A produced a transient and dose-dependent increase in AP duration at 90% of repolarization (APD90) in trpv4+/+ but not in trpv4-/- myocytes or when combined with TRPV4 inhibitor GSK2193874 (100 nM). Hence, GSK1016790A increased calcium transient (CaT) amplitude in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 carries an inward Ca2+ current in myocytes. Conversely, TRPV4 inhibitor GSK2193874 (100 nM) alone reduced APD90 in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 prolongs AP duration in basal condition. Finally, introducing TRPV4 parameters in a mathematical model predicted the development of an inward TRPV4 current during repolarization that increases AP duration and CaT amplitude, in accord with what was found experimentally. This study shows for the first time that TRPV4 modulates AP and QTc durations. It would be interesting to evaluate whether TRPV4 could be involved in long QT-mediated ventricular arrhythmias.NEW & NOTEWORTHY Transient receptor potential vanilloid 4 (TRPV4) is expressed at the membrane of mouse ventricular myocytes and colocalizes with non-T-tubular L-type calcium channels. Deletion of trpv4 gene in mice results in shortened QT interval on electrocardiogram and reduced action potential duration of ventricular myocytes. Pharmacological activation of TRPV4 channel leads to increased action potential duration and increased calcium transient amplitude in trpv4-/- but not in trpv4-/- ventricular myocytes. To the contrary, TRPV4 channel pharmacological inhibition reduces action potential duration in trpv4+/+ but not in trpv4-/- myocytes. Integration of TRPV4 channel in a computational model of mouse action potential shows that the channel carries an inward current contributing to slowing down action potential repolarization and to increase calcium transient amplitude, similarly to what is observed experimentally. This study highlights for the first time the involvement of TRPV4 channel in ventricular electrical activity.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/metabolismo , Función Ventricular Izquierda , Potenciales de Acción/efectos de los fármacos , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Quinolinas/farmacología , Sulfonamidas/farmacología , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
10.
Pflugers Arch ; 472(12): 1719-1732, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047172

RESUMEN

Cardiac fibroblasts play an important role in cardiac matrix turnover and are involved in cardiac fibrosis development. Ca2+ is a driving belt in this phenomenon. This study evaluates the functional expression and contribution of the Ca2+-activated channel TRPM4 in atrial fibroblast phenotype. Molecular and electrophysiological investigations were conducted in human atrial fibroblasts in primary culture and in atrial fibroblasts obtained from wild-type and transgenic mice with disrupted Trpm4 gene (Trpm4-/-). A typical TRPM4 current was recorded on human cells (equal selectivity for Na+ and K+, activation by internal Ca2+, voltage sensitivity, conductance of 23.2 pS, inhibition by 9-phenanthrol (IC50 = 6.1 × 10-6 mol L-1)). Its detection rate was 13% on patches at days 2-4 in culture but raised to 100% on patches at day 28. By the same time, a cell growth was observed. This growth was smaller when cells were maintained in the presence of 9-phenanthrol. Similar cell growth was measured on wild-type mice atrial fibroblasts during culture. However, this growth was minimized on Trpm4-/- mice fibroblasts compared to control animals. In addition, the expression of alpha smooth muscle actin increased during culture of atrial fibroblasts from wild-type mice. This was not observed in Trpm4-/- mice fibroblasts. It is concluded that TRPM4 participates in fibroblast growth and could thus be involved in cardiac fibrosis.


Asunto(s)
Fibrosis Endomiocárdica/metabolismo , Miofibroblastos/metabolismo , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción , Anciano , Animales , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Miocardio/citología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/fisiología , Fenantrenos
11.
PLoS Biol ; 17(2): e2006094, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789900

RESUMEN

Inspiratory breathing movements depend on pre-Bötzinger complex (preBötC) interneurons that express calcium (Ca2+)-activated nonselective cationic current (ICAN) to generate robust neural bursts. Hypothesized to be rhythmogenic, reducing ICAN is predicted to slow down or stop breathing; its contributions to motor pattern would be reflected in the magnitude of movements (output). We tested the role(s) of ICAN using reverse genetic techniques to diminish its putative ion channels Trpm4 or Trpc3 in preBötC neurons in vivo. Adult mice transduced with Trpm4-targeted short hairpin RNA (shRNA) progressively decreased the tidal volume of breaths yet surprisingly increased breathing frequency, often followed by gasping and fatal respiratory failure. Mice transduced with Trpc3-targeted shRNA survived with no changes in breathing. Patch-clamp and field recordings from the preBötC in mouse slices also showed an increase in the frequency and a decrease in the magnitude of preBötC neural bursts in the presence of Trpm4 antagonist 9-phenanthrol, whereas the Trpc3 antagonist pyrazole-3 (pyr-3) showed inconsistent effects on magnitude and no effect on frequency. These data suggest that Trpm4 mediates ICAN, whose influence on frequency contradicts a direct role in rhythm generation. We conclude that Trpm4-mediated ICAN is indispensable for motor output but not the rhythmogenic core mechanism of the breathing central pattern generator.


Asunto(s)
Interneuronas/metabolismo , Actividad Motora , Respiración , Canales Catiónicos TRPM/metabolismo , Envejecimiento/fisiología , Animales , Conducta Animal , Femenino , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPM/genética , Vigilia
12.
Nat Rev Cardiol ; 16(6): 344-360, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30664669

RESUMEN

Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.


Asunto(s)
Fibroblastos/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Nodo Sinoatrial/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Potenciales de Acción , Animales , Fármacos Cardiovasculares/uso terapéutico , Fibroblastos/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Cardiopatías/fisiopatología , Humanos , Terapia Molecular Dirigida , Miocitos Cardíacos/efectos de los fármacos , Ramos Subendocárdicos/efectos de los fármacos , Ramos Subendocárdicos/fisiopatología , Transducción de Señal , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/fisiopatología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
13.
J Cardiovasc Pharmacol Ther ; 22(6): 564-573, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28381122

RESUMEN

BACKGROUND AND PURPOSE: Cardioprotection against ischemia-reperfusion (I/R) damages remains a major concern during prehospital management of acute myocardial infarction. Noble gases have shown beneficial effects in preconditioning studies. Because emergency proceedings in the context of myocardial infarction require postconditioning strategies, we evaluated the effects of argon in such protocols on mammalian cardiac tissue. EXPERIMENTAL APPROACHES: In rat, cardiac I/R was induced in vivo by transient coronary artery ligature and cardiac functions were evaluated by magnetic resonance imaging. Hypoxia-reoxygenation (H/R)-induced arrhythmias were evaluated in vitro using intracellular microelectrodes on both rat-isolated ventricle and a model of border zone in guinea pig ventricle. Hypoxia-reoxygenation loss of contractile force was assessed in human atrial appendages. In those models, postconditioning was induced by 5 minutes application of argon at the time of reperfusion. KEY RESULTS: In the in vivo model, I/R produced left ventricular ejection fraction decrease (24%) and wall motion score increase (36%) which was prevented when argon was applied in postconditioning. In vitro, argon postconditioning abolished H/R-induced arrhythmias such as early after depolarizations, conduction blocks, and reentries. Recovery of contractile force in human atrial appendages after H/R was enhanced in the argon group, increasing from 51% ± 2% in the nonconditioned group to 83% ± 7% in the argon-treated group ( P < .001). This effect of argon was abolished in the presence of wortmannin and PD98059 which inhibit prosurvival phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and MEK/extracellular receptor kinase 1/2 (ERK 1/2), respectively, or in the presence of the mitochondrial permeability transition pore opener atractyloside, suggesting the involvement of the reperfusion injury salvage kinase pathway. CONCLUSION AND IMPLICATIONS: Argon has strong cardioprotective properties when applied in conditions of postconditioning and thus appears as a potential therapeutic tool in I/R situations.


Asunto(s)
Argón/administración & dosificación , Poscondicionamiento Isquémico/métodos , Daño por Reperfusión Miocárdica/prevención & control , Reperfusión Miocárdica/métodos , Animales , Apéndice Atrial/efectos de los fármacos , Apéndice Atrial/fisiopatología , Cobayas , Humanos , Masculino , Daño por Reperfusión Miocárdica/fisiopatología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
14.
BMC Med Genet ; 18(1): 31, 2017 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-28315637

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterized by prolongation of the QT interval, a risk of syncope, and sudden death. There are already a number of causal genes in LQTS, but not all LQTS patients have an identified mutation, which suggests LQTS unknown genes. METHODS: A cohort of 178 LQTS patients, with no mutations in the 3 major LQTS genes (KCNQ1, KCNH2, and SCN5A), was screened for mutations in the transient potential melastatin 4 gene (TRPM4). RESULTS: Four TRPM4 variants (2.2% of the cohort) were found to change highly conserved amino-acids and were either very rare or absent from control populations. Therefore, these four TRPM4 variants were predicted to be disease causing. Furthermore, no mutations were found in the DNA of these TRPM4 variant carriers in any of the 13 major long QT syndrome genes. Two of these variants were further studied by electrophysiology (p.Val441Met and p.Arg499Pro). Both variants showed a classical TRPM4 outward rectifying current, but the current was reduced by 61 and 90% respectively, compared to wild type TRPM4 current. CONCLUSIONS: This study supports the view that TRPM4 could account for a small percentage of LQTS patients. TRPM4 contribution to the QT interval might be multifactorial by modulating whole cell current but also, as shown in Trpm4-/- mice, by modulating cardiomyocyte proliferation. TRPM4 enlarges the subgroup of LQT genes (KCNJ2 in Andersen syndrome and CACNA1C in Timothy syndrome) known to increase the QT interval through a more complex pleiotropic effect than merely action potential alteration.


Asunto(s)
Sustitución de Aminoácidos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Canales Catiónicos TRPM/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
15.
J Physiol ; 594(2): 295-306, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26548780

RESUMEN

KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. ABSTRACT: Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias.


Asunto(s)
Potenciales de Acción , Miocitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Femenino , Miocitos Cardíacos/fisiología , Potasio/metabolismo , Ramos Subendocárdicos/citología , Ramos Subendocárdicos/fisiología , Conejos , Sodio/metabolismo
16.
Cardiovasc Res ; 108(1): 21-30, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26272755

RESUMEN

TRPM4 forms a non-selective cation channel activated by internal Ca(2+). Its functional expression was demonstrated in cardiomyocytes of several mammalian species including humans, but the channel is also present in many other tissues. The recent characterization of the TRPM4 inhibitor 9-phenanthrol, and the availability of transgenic mice have helped to clarify the role of TRPM4 in cardiac electrical activity, including diastolic depolarization from the sino-atrial node cells in mouse, rat, and rabbit, as well as action potential duration in mouse cardiomyocytes. In rat and mouse, pharmacological inhibition of TRPM4 prevents cardiac ischaemia-reperfusion injuries and decreases the occurrence of arrhythmias. Several studies have identified TRPM4 mutations in patients with inherited cardiac diseases including conduction blocks and Brugada syndrome. This review identifies TRPM4 as a significant actor in cardiac electrophysiology.


Asunto(s)
Corazón/fisiología , Canales Catiónicos TRPM/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Diástole/fisiología , Humanos , ARN Mensajero/análisis , Canales Catiónicos TRPM/genética
17.
PLoS One ; 10(7): e0132592, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26222262

RESUMEN

In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone modulates K+ currents involved in the holding of the resting membrane potential (RMP). The aim of this study was to assess the electrophysiological impact of aldosterone on IK1 current during myocardial ischemia-reperfusion. We used an in vitro model of "border zone" using right rabbit ventricle and standard microelectrode technique followed by cell-attached recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments, aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4 ms to 116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely, potassium canrenoate 100 nmol/L and RU 28318 1 µmol/l alone did not affect AP parameters and premature ventricular contractions occurrence (except Vmax which was decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318, a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced rapid and MR-independent deleterious effects including an arrhythmia substrate (increased APD90 dispersion) and triggered activities (increased premature ventricular contractions occurrence on reperfusion) possibly related to direct IK1 activation.


Asunto(s)
Aldosterona/farmacología , Ventrículos Cardíacos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Femenino , Ventrículos Cardíacos/patología , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Conejos
18.
Methods Mol Biol ; 1183: 291-307, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25023317

RESUMEN

This chapter describes appropriate methods to investigate mammalian cardiac channels properties at the single channel level. Cell isolation is performed from new born or adult heart by enzymatic digestion on minced tissue or using the Langendorff apparatus. Isolation proceeding is suitable for rabbit, rat, and mouse hearts. In addition, isolation of human atrial cardiomyocytes is described. Such freshly isolated cells or cells maintained in primary culture are suitable for patch-clamp studies. Here we describe the single channel variants of the patch-clamp technique (cell-attached, inside-out, outside-out) used to investigate channel properties. Proceedings for the evaluation of biophysical properties such as conductance, ionic selectivity, regulations by extracellular and intracellular mechanisms are described. To illustrate the study, we provide an example by the characterization of a calcium-activated non-selective cation channel (TRPM4).


Asunto(s)
Separación Celular/métodos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp/métodos , Canales Catiónicos TRPM/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Separación Celular/instrumentación , Células Cultivadas , Diseño de Equipo , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Humanos
19.
J Cardiovasc Pharmacol ; 64(2): 134-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24662493

RESUMEN

OBJECTIVE: To assess the electrophysiological impact of aldosterone during myocardial ischemia-reperfusion. METHODS: We used an in vitro model of "border zone" using rabbit right ventricle and standard microelectrodes. RESULTS: Aldosterone (10 and 100 nmol/L) shortened ischemic action potential [action potential duration at 90% of repolarization (APD90), from 55 ± 3 to 39 ± 1 ms and 36 ± 3 ms, respectively, P < 0.05] and induced resting membrane potential (RMP) hyperpolarization in the nonischemic zone (from -83 ± 1 to -93 ± 7 mV and -94 ± 3 mV, respectively, P < 0.05) and in the ischemic zone during reperfusion (from -81 ± 2 to -88 ± 2 mV and -91 ± 2 mV, respectively, P < 0.05). Bimakalim, an ATP-sensitive potassium (K(ATP)) channel opener, also induced RMP hyperpolarization and APD90 shortening. Aldosterone (10 and 100 nmol/L) increased APD90 dispersion between ischemic and nonischemic zones (from 96 ± 3 to 117 ± 5 ms and 131 ± 6 ms, respectively, P < 0.05) and reperfusion-induced severe premature ventricular contraction occurrence (from 18% to 67% and 75%, respectively, P < 0.05). Adding glibenclamide, a nonspecific K(ATP) antagonist, to aldosterone superfusion abolished these effects different to sodium 5-hydroxydecanoate, a mitochondrial-K(ATP) antagonist. CONCLUSIONS: In this in vitro rabbit model of border zone, aldosterone induced RMP hyperpolarization and decreased ischemic APD90 evoking the modulation of K currents. Glibenclamide prevented these effects different to 5-hydroxydecanoate, suggesting that sarcolemmal-K(ATP) channels may be involved in this context.


Asunto(s)
Aldosterona/metabolismo , Ventrículos Cardíacos/metabolismo , Canales KATP/metabolismo , Sarcolema/metabolismo , Potenciales de Acción/efectos de los fármacos , Aldosterona/farmacología , Animales , Benzopiranos/farmacología , Dihidropiridinas/farmacología , Modelos Animales de Enfermedad , Femenino , Gliburida/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Técnicas In Vitro , Canales KATP/agonistas , Canales KATP/antagonistas & inhibidores , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Perfusión , Conejos
20.
Heart Rhythm ; 10(11): 1683-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23954346

RESUMEN

BACKGROUND: The transient receptor potential melastatin 4 (TRPM4) channel is expressed in the sinoatrial node, but its physiologic roles in this tissue with cardiac pacemaker properties remain unknown. This Ca(2+)-activated nonselective cation channel (NSCCa) induces cell depolarization at negative potentials. It is implicated in burst generation in neurons and participates in induction of ectopic beating in cardiac ventricular preparations submitted to hypoxia/reoxygenation. Accordingly, TRPM4 may participate in action potential (AP) triggering in the sinoatrial node. OBJECTIVE: The purpose of this study was to investigate the influence of TRPM4 on spontaneous heart beating. METHODS: Spontaneous APs were recorded using intracellular microelectrodes in mouse, rat, and rabbit isolated right atria. RESULTS: In the spontaneously beating mouse atrium, superfusion of the TRPM4-specific inhibitor 9-phenanthrol produced a concentration-dependent reduction in AP rate (maximal reduction = 62% that of control; EC50 = 8 × 10(-6) mol●L(-1)) without affecting other AP parameters. These effects were absent in TRPM4(-/-) mice. 9-Phenanthrol exerted a rate-dependent reduction with a higher effect at low rates. Similar results were obtained in rat. Moreover, application of 9-phenanthrol produced a reduction in diastolic depolarization slope in rabbit sinus node pacemaker cells. CONCLUSION: These data showed that TRPM4 modulates beating rate. Pacemaker activity in the sinoatrial node results from the slow diastolic depolarization slope due to the "funny" current, Na/Ca exchange, and a Ca(2+)-activated nonselective cation current, which can be attributable in part to TRPM4 that may act against bradycardia.


Asunto(s)
Bradicardia/terapia , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca/fisiología , Fenantrenos/farmacología , Nodo Sinoatrial/fisiopatología , Canales Catiónicos TRPM/biosíntesis , Animales , Bradicardia/metabolismo , Bradicardia/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Inhibidores de Proteínas Quinasas , Conejos , Ratas , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/patología , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...