Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ageing Res Rev ; 99: 102360, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821417

RESUMEN

This article brings a new perspective on oral physiology by presenting the oral organ as an integrated entity within the entire organism and its surrounding environment. Rather than considering the mouth solely as a collection of discrete functions, this novel approach emphasizes its role as a dynamic interphase, supporting interactions between the body and external factors. As a resilient ecosystem, the equilibrium of mouth ecological niches is the result of a large number of interconnected factors including the heterogeneity of different oral structures, diversity of resources, external and internal pressures and biological actors. The manuscript seeks to deepen the understanding of age-related changes within the oral cavity and throughout the organism, aligning with the evolving field of gerophysiology. The strategic position and fundamental function of the mouth make it an invaluable target for early prevention, diagnosis, treatment, and even reversal of aging effects throughout the entire organism. Recognizing the oral cavity capacity for sensory perception, element capture and information processing underscores its vital role in continuous health monitoring. Overall, this integrated understanding of the oral physiology aims at advancing comprehensive approaches to the oral healthcare and promoting broader awareness of its implications on the overall well-being.


Asunto(s)
Envejecimiento , Envejecimiento Saludable , Boca , Humanos , Boca/fisiología , Envejecimiento Saludable/fisiología , Envejecimiento/fisiología , Salud Bucal
2.
Medicina (Kaunas) ; 59(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37109631

RESUMEN

Orofacial granulomatosis (OFG) represents a heterogeneous group of rare orofacial diseases. When affecting gingiva, it appears as a chronic soft tissue inflammation, sometimes combined with the enlargement and swelling of other intraoral sites, including the lips. Gingival biopsy highlights noncaseating granulomatous inflammation, similar to that observed in Crohn's disease and sarcoidosis. At present, the etiology of OFG remains uncertain, although the involvement of the genetic background and environmental triggers, such as oral conditions or therapies (including orthodontic treatment), has been suggested. The present study reports the results of a detailed clinical and 2D/3D microscopy investigation of a case of gingival orofacial granulomatosis in an 8-year-old male patient after orthodontic therapy. Intraoral examination showed an erythematous hyperplasia of the whole gingiva with a granular appearance occurring a few weeks after the installation of a quad-helix. Peri-oral inspection revealed upper labial swelling and angular cheilitis. General investigations did not report ongoing extra-oral disturbances with the exception of a weakly positive anti-Saccharomyces cerevicae IgG auto-antibody. Two- and three-dimensional microscopic investigations confirmed the presence of gingival orofacial granulomatosis. Daily corticoid mouthwashes over a period of 3 months resulted in a slight improvement in clinical signs, despite an intermittent inflammation recurrence. This study brings new insights into the microscopic features of gingival orofacial granulomatosis, thus providing key elements to oral practitioners to ensure accurate and timely OFG diagnosis. The accurate diagnosis of OFG allows targeted management of symptoms and patient monitoring over time, along with early detection and treatment of extra-oral manifestations, such as Crohn's disease.


Asunto(s)
Enfermedad de Crohn , Granulomatosis Orofacial , Masculino , Humanos , Niño , Granulomatosis Orofacial/etiología , Granulomatosis Orofacial/diagnóstico , Granulomatosis Orofacial/tratamiento farmacológico , Enfermedad de Crohn/complicaciones , Encía , Microscopía , Inflamación/complicaciones , Edema
3.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768532

RESUMEN

Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Hidrogeles/química , Medicina Regenerativa , Tejido Adiposo/metabolismo , Fibrina/metabolismo , Ratones Desnudos , Distribución Tisular , Diferenciación Celular
4.
Nat Commun ; 14(1): 80, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604419

RESUMEN

Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Tejido Adiposo , Diferenciación Celular/genética , Adipogénesis/genética
5.
Genet Med ; 24(12): 2475-2486, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36197437

RESUMEN

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Asunto(s)
Trastorno del Espectro Autista , Displasia Ectodérmica , Trastornos del Neurodesarrollo , Humanos , Cuero Cabelludo/anomalías , Cuero Cabelludo/metabolismo , Trastorno del Espectro Autista/genética , Células HEK293 , Factor de Transcripción AP-1/genética , Exones/genética , Displasia Ectodérmica/genética , Trastornos del Neurodesarrollo/genética , ARN Mensajero , Antígeno 2 Relacionado con Fos/genética
6.
Front Physiol ; 13: 899626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910575

RESUMEN

Traditional thin sectioning microscopy of large bone and dental tissue samples using demineralization may disrupt structure morphologies and even damage soft tissues, thus compromising the histopathological investigation. Here, we developed a synergistic and original framework on thick sections based on wide-field multi-fluorescence imaging and spectral Principal Component Analysis (sPCA) as an alternative, fast, versatile, and reliable solution, suitable for highly mineralized tissue structure sustain and visualization. Periodontal 2-mm thick sections were stained with a solution containing five fluorescent dyes chosen for their ability to discriminate close tissues, and acquisitions were performed with a multi-zoom macroscope for blue, green, red, and NIR (near-infrared) emissions. Eigen-images derived from both standard scaler (Std) and Contrast Limited Adaptive Histogram Equalization (Clahe) pre-preprocessing significantly enhanced tissue contrasts, highly suitable for histopathological investigation with an in-depth detail for sub-tissue structure discrimination. Using this method, it is possible to preserve and delineate accurately the different anatomical/morphological features of the periodontium, a complex tooth-supporting multi-tissue. Indeed, we achieve characterization of gingiva, alveolar bone, cementum, and periodontal ligament tissues. The ease and adaptability of this approach make it an effective method for providing high-contrast features that are not usually available in standard staining histology. Beyond periodontal investigations, this first proof of concept of an sPCA solution for optical microscopy of complex structures, especially including mineralized tissues opens new perspectives to deal with other chronic diseases involving complex tissue and organ defects. Overall, such an imaging framework appears to be a novel and convenient strategy for optical microscopy investigation.

7.
NPJ Regen Med ; 6(1): 63, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650070

RESUMEN

Tissue repair after injury in adult mammals, usually results in scarring and loss of function in contrast to lower vertebrates such as the newt and zebrafish that regenerate. Understanding the regulatory processes that guide the outcome of tissue repair is therefore a concerning challenge for regenerative medicine. In multiple regenerative animal species, the nerve dependence of regeneration is well established, but the nature of the innervation required for tissue regeneration remains largely undefined. Using our model of induced adipose tissue regeneration in adult mice, we demonstrate here that nociceptive nerves promote regeneration and their removal impairs tissue regeneration. We also show that blocking the receptor for the nociceptive neuropeptide calcitonin gene-related peptide (CGRP) inhibits regeneration, whereas CGRP administration induces regeneration. These findings reveal that peptidergic nociceptive neurons are required for adult mice tissue regeneration.

8.
NPJ Regen Med ; 6(1): 41, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344890

RESUMEN

Tissue repair after lesion usually leads to scar healing and thus loss of function in adult mammals. In contrast, other adult vertebrates such as amphibians have the ability to regenerate and restore tissue homeostasis after lesion. Understanding the control of the repair outcome is thus a concerning challenge for regenerative medicine. We recently developed a model of induced tissue regeneration in adult mice allowing the comparison of the early steps of regenerative and scar healing processes. By using studies of gain and loss of function, specific cell depletion approaches, and hematopoietic chimeras we demonstrate here that tissue regeneration in adult mammals depends on an early and transient peak of granulocyte producing reactive oxygen species and an efficient efferocytosis specifically by tissue-resident macrophages. These findings highlight key and early cellular pathways able to drive tissue repair towards regeneration in adult mammals.

9.
J Biol Chem ; 296: 100137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268383

RESUMEN

Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical ß3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.


Asunto(s)
Adipocitos Beige/metabolismo , Regulación de la Expresión Génica , Ácido Láctico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Adipocitos Beige/citología , Animales , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/genética , Transducción de Señal , Simportadores/genética , Termogénesis
10.
PLoS Comput Biol ; 16(2): e1007322, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059013

RESUMEN

We present a multi-disciplinary image-based blood flow perfusion modeling of a whole organ vascular network for analyzing both its structural and functional properties. We show how the use of Light-Sheet Fluorescence Microscopy (LSFM) permits whole-organ micro-vascular imaging, analysis and modelling. By using adapted image post-treatment workflow, we could segment, vectorize and reconstruct the entire micro-vascular network composed of 1.7 million vessels, from the tissue-scale, inside a ∼ 25 × 5 × 1 = 125mm3 volume of the mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at micron resolution, with the entire blood perfusion modeled. Adapted network analysis revealed the structural and functional organization of meso-scale tissue as strongly connected communities of vessels. These communities share a distinct heterogeneous core region and a more homogeneous peripheral region, consistently with known biological functions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time, strongly connected functional vascular communities. These community networks support heterogeneous micro-environments. This work provides the proof of concept that in-silico all-tissue perfusion modeling can reveal new structural and functional exchanges between micro-regions in tissues, found from community clusters in the vascular graph.


Asunto(s)
Circulación Sanguínea , Modelos Biológicos , Animales , Simulación por Computador , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Sci Rep ; 9(1): 6684, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040317

RESUMEN

Adipose tissue, as the main energy storage organ and through its endocrine activity, is interconnected with all physiological functions. It plays a fundamental role in energy homeostasis and in the development of metabolic disorders. Up to now, this tissue has been analysed as a pool of different cell types with very little attention paid to the organization and putative partitioning of cells. Considering the absence of a complete picture of the intimate architecture of this large soft tissue, we developed a method that combines tissue clearing, acquisition of autofluorescence or lectin signals by confocal microscopy, segmentation procedures based on contrast enhancement, and a new semi-automatic image analysis process, allowing accurate and quantitative characterization of the whole 3D fat pad organization. This approach revealed the unexpected anatomic complexity of the murine subcutaneous fat pad. Although the classical picture of adipose tissue corresponds to a superposition of simple and small ellipsoidal lobules of adipose cells separated by mesenchymal spans, our results show that segmented lobules display complex 3D poly-lobular shapes. Despite differences in shape and size, the number of these poly-lobular subunits is similar from one fat pad to another. Finally, investigation of the relationships of these subunits between each other revealed a never-described organization in two clusters with distinct molecular signatures and specific vascular and sympathetic nerve densities correlating with different browning abilities. This innovative procedure reveals that subcutaneous adipose tissue exhibits a subtle functional heterogeneity with partitioned areas, and opens new perspectives towards understanding its functioning and plasticity.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Grasa Subcutánea/citología , Grasa Subcutánea/diagnóstico por imagen , Adipocitos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Metabolismo de los Lípidos , Microscopía Confocal , Grasa Subcutánea/metabolismo
12.
Cell Rep ; 27(2): 323-333.e5, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970240

RESUMEN

Ectopic lipid deposition (ELD) is defined by excess fat storage in locations not classically associated with adipose tissue (AT) storage. ELD is positively correlated with insulin resistance and increased risk of metabolic disorders. ELD appears as lipid droplets or adipocytes, whose cell origin is unknown. We previously showed that subcutaneous AT (ScAT) releases adipocyte progenitors into the circulation. Here, we demonstrate that triggering or preventing the release of adipocyte precursors from ScAT directly promoted or limited ectopic adipocyte formation in skeletal muscle in mice. Importantly, obesity-associated metabolic disorders could be mimicked by causing adipocyte precursor release without a high-fat diet. Finally, during nutrient overload, adipocyte progenitors exited ScAT, where their retention signals (CXCR4/CXCL12 axis) were greatly decreased, and further infiltrated skeletal muscles. These data provide insights into the formation of ELD associated with calorie overload and highlight adipocyte progenitor trafficking as a potential target in the treatment of metabolic diseases.


Asunto(s)
Grasa Subcutánea/metabolismo , Animales , Humanos , Absorción Intramuscular , Ratones , Células del Estroma/metabolismo
13.
Sci Rep ; 8(1): 12170, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111876

RESUMEN

Inhibition of regeneration and induction of tissue fibrosis are classic outcomes of tissue repair in adult mammals. Here, using a newly developed model of regeneration in adult mammals i.e. regeneration after massive resection of an inguinal fat pad, we demonstrate that both endogenous and exogenous opioids prevent tissue regeneration in adults, by inhibiting the early production of reactive oxygen species (ROS) that generally occurs after lesion and is required for regeneration. These effects can be overcome and regeneration induced by the use of an opioid antagonist. The results obtained in both our new model and the gold standard adult zebrafish demonstrate that this mechanism can be considered as a general paradigm in vertebrates. This work clearly demonstrates that ROS is required for tissue regeneration in adult mammals and shows the deleterious effect of opioids on tissue regeneration through the control of this ROS production. It thus raises questions about opioid-based analgesia in perioperative care.


Asunto(s)
Analgésicos Opioides/farmacología , Regeneración/efectos de los fármacos , Tejido Adiposo/patología , Analgésicos Opioides/metabolismo , Aletas de Animales , Animales , Femenino , Fibrosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Miocitos Cardíacos/patología , Naloxona/análogos & derivados , Naloxona/farmacología , Compuestos de Amonio Cuaternario/farmacología , Especies Reactivas de Oxígeno/metabolismo , Regeneración/fisiología , Tramadol/farmacología , Pez Cebra
14.
Obesity (Silver Spring) ; 24(5): 1081-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26999447

RESUMEN

OBJECTIVE: White and brown adipose tissues play a major role in the regulation of metabolic functions. With the explosion of obesity and metabolic disorders, the interest in adipocyte biology is growing constantly. While several studies have demonstrated functional differences between adipose fat pads, especially in their involvement in metabolic diseases, there are no data available on possible heterogeneity within an adipose depot. METHODS: This study investigated the three-dimensional (3-D) organization of the inguinal fat pad in adult mice by combining adipose tissue clearing and autofluorescence signal acquisition by confocal microscopy. In addition, the study analyzed the expression of genes involved in adipocyte biology and browning at the mARN and protein levels in distinct areas of the inguinal adipose tissue, in control conditions and after cold exposure. RESULTS: Semiautomated 3-D image analysis revealed an organization of the fat depot showing two regions: the core was structured into segmented lobules, whereas the periphery appeared unsegmented. Perilipin immunostaining showed that most of the adipocytes located in the core region had smaller lipid droplets, suggesting a brown-like phenotype. qPCR analysis showed a higher expression of the browning markers Ucp1, Prdm16, Ppargc1a, and Cidea in the core region than at the periphery. Finally, cold exposure induced upregulation of thermogenic gene expression associated with an increase of UCP1 protein, specifically in the core region of the inguinal fat depot. CONCLUSIONS: Altogether, these data demonstrate a structural and functional heterogeneity of the inguinal fat pad, with an anatomically restricted browning process in the core area.


Asunto(s)
Tejido Adiposo Pardo/anatomía & histología , Grasa Subcutánea/anatomía & histología , Adipocitos/citología , Tejido Adiposo Pardo/fisiología , Adiposidad , Animales , Biomarcadores/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Obesidad , Imagen Óptica , Grasa Subcutánea/química , Grasa Subcutánea/fisiología , Termogénesis , Proteína Desacopladora 1/análisis
15.
Cell Rep ; 6(3): 438-44, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24485657

RESUMEN

The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.


Asunto(s)
Ingestión de Alimentos/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Hipotálamo/metabolismo , Transducción de Señal , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Técnicas de Silenciamiento del Gen , Leucina/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
16.
PLoS One ; 8(9): e74021, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040150

RESUMEN

Variations in plasma fatty acid (FA) concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH) neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36). The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or ß-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/- heparin (IL, IL(H), respectively) or saline/heparin (SH) were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1) Rats previously injected in ventromedian nucleus (VMN) with shRNA against CD36 or scrambled RNA; 2) Etomoxir (CPT1 inhibitor) or saline co-infused with IL(H)/S(H); and 3) Triacsin C (acylCoA synthase inhibitor) or saline co-infused with IL(H)/S(H). IL(H) significantly lowered food intake during refeeding compared to S(H) (p<0.001). Five hours after refeeding, etomoxir did not affect this inhibitory effect of IL(H) on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented IL(H) effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.


Asunto(s)
Antígenos CD36/metabolismo , Ácidos Grasos/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Animales , Antígenos CD36/genética , Ingestión de Alimentos , Emulsiones/administración & dosificación , Proteínas de Transporte de Ácidos Grasos/genética , Ácidos Grasos/sangre , Expresión Génica , Masculino , Modelos Biológicos , Fosfolípidos/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Aceite de Soja/administración & dosificación
17.
J Neurosci ; 32(35): 11970-9, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22933782

RESUMEN

Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opiomelanocortin (POMC) neurons. We identified the polysialic acid molecule (PSA) as a mediator of the diet-induced rewiring of arcuate POMC. Moreover, local pharmacological inhibition and genetic disruption of the PSA signaling limits the behavioral and metabolic adaptation to HFD, as treated mice failed to normalize energy intake and showed increased body weight gain after the HFD challenge. Altogether, these findings reveal the existence of physiological hypothalamic rewiring involved in the homeostatic response to dietary fat. Furthermore, defects in the hypothalamic plasticity-driven adaptive response to HFD are obesogenic and could be involved in the development of metabolic diseases.


Asunto(s)
Adaptación Fisiológica/fisiología , Núcleo Arqueado del Hipotálamo/fisiología , Grasas de la Dieta/administración & dosificación , Proopiomelanocortina/fisiología , Ácidos Siálicos/fisiología , Animales , Ingestión de Energía/genética , Metabolismo Energético/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/fisiología , Plasticidad Neuronal/genética , Técnicas de Cultivo de Órganos , Proopiomelanocortina/metabolismo , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Transducción de Señal/genética , Aumento de Peso/genética
18.
Antioxid Redox Signal ; 17(3): 433-44, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22229526

RESUMEN

AIMS: Hypothalamic mitochondrial reactive oxygen species (mROS)-mediated signaling has been recently shown to be involved in the regulation of energy homeostasis. However, the upstream signals that control this mechanism have not yet been determined. Here, we hypothesize that glucose-induced mitochondrial fission plays a significant role in mROS-dependent hypothalamic glucose sensing. RESULTS: Glucose-triggered translocation of the fission protein dynamin-related protein 1 (DRP1) to mitochondria was first investigated in vivo in hypothalamus. Thus, we show that intracarotid glucose injection induces the recruitment of DRP1 to VMH mitochondria in vivo. Then, expression was transiently knocked down by intra-ventromedial hypothalamus (VMH) DRP1 siRNA (siDRP1) injection. 72 h post siRNA injection, brain intracarotid glucose induced insulin secretion, and VMH glucose infusion-induced refeeding decrease were measured, as well as mROS production. The SiDRP1 rats decreased mROS and impaired intracarotid glucose injection-induced insulin secretion. In addition, the VMH glucose infusion-induced refeeding decrease was lost in siDRP1 rats. Finally, mitochondrial function was evaluated by oxygen consumption measurements after DRP1 knock down. Although hypothalamic mitochondrial respiration was not modified in the resting state, substrate-driven respiration was impaired in siDRP1 rats and associated with an alteration of the coupling mechanism. INNOVATION AND CONCLUSION: Collectively, our results suggest that glucose-induced DRP1-dependent mitochondrial fission is an upstream regulator for mROS signaling, and consequently, a key mechanism in hypothalamic glucose sensing. Thus, for the first time, we demonstrate the involvement of DRP1 in physiological regulation of brain glucose-induced insulin secretion and food intake inhibition. Such involvement implies DRP1-dependent mROS production.


Asunto(s)
Núcleo Arqueado del Hipotálamo/enzimología , Dinaminas/metabolismo , Glucosa/metabolismo , Mitocondrias/enzimología , Núcleo Hipotalámico Ventromedial/enzimología , Animales , Regulación del Apetito , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/ultraestructura , Dinaminas/genética , Fuentes Generadoras de Energía , Técnicas de Silenciamiento del Gen , Glucosa/fisiología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/enzimología , Consumo de Oxígeno , Transporte de Proteínas , Interferencia de ARN , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Hipotalámico Ventromedial/ultraestructura
19.
Am J Physiol Endocrinol Metab ; 298(5): E1078-87, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20179244

RESUMEN

The sugar transporter GLUT2, present in several tissues of the gut-brain axis, has been reported to be involved in the control of food intake. GLUT2 is a sugar transporter sustaining energy production in the cell, but it can also function as a receptor for extracellular glucose. A glucose-signaling pathway is indeed triggered, independently of glucose metabolism, through its large cytoplasmic loop domain. However, the contribution of the receptor function over the transporter function of GLUT2 in the control of food intake remains to be determined. Thus, we generated transgenic mice that express a GLUT2-loop domain, blocking the detection of glucose but leaving GLUT2-dependent glucose transport unaffected. Inhibiting GLUT2-mediated glucose detection augmented daily food intake by a mechanism that increased the meal size but not the number of meals. Peripheral hormones (ghrelin, insulin, leptin) were unaffected, leading to a focus on central aspects of feeding behavior. We found defects in c-Fos activation by glucose in the arcuate nucleus and changes in the amounts of TRH and orexin neuropeptide mRNA, which are relevant to poorly controlled meal size. Our data provide evidence that glucose detection by GLUT2 contributes to the control of food intake by the hypothalamus. The sugar transporter receptor, i.e., "transceptor" GLUT2, may constitute a drug target to treat eating disorders and associated metabolic diseases, particularly by modulating its receptor function without affecting vital sugar provision by its transporter function.


Asunto(s)
Ingestión de Alimentos/fisiología , Transportador de Glucosa de Tipo 2/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Análisis de Varianza , Animales , Transporte Biológico/fisiología , Peso Corporal/fisiología , Recuento de Células , Metabolismo Energético , Conducta Alimentaria/fisiología , Ghrelina/sangre , Transportador de Glucosa de Tipo 2/genética , Homeostasis/fisiología , Inmunohistoquímica , Insulina/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leptina/sangre , Ratones , Ratones Transgénicos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Orexinas , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Estadísticas no Paramétricas , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...