Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(8): 2620-2637, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36880307

RESUMEN

Deschampsia antarctica is one of the only two native vascular plants in Antarctica, mostly located in the ice-free areas of the Peninsula's coast and adjacent islands. This region is characterized by a short growing season, frequent extreme climatic events, and soils with reduced nutrient availability. However, it is unknown whether its photosynthetic and stress tolerance mechanisms are affected by the availability of nutrients to deal with this particular environment. We studied the photosynthetic, primary metabolic, and stress tolerance performance of D. antarctica plants growing on three close sites (<500 m) with contrasting soil nutrient conditions. Plants from all sites showed similar photosynthetic rates, but mesophyll conductance and photobiochemistry were more limiting (~25%) in plants growing on low-nutrient availability soils. Additionally, these plants showed higher stress levels and larger investments in photoprotection and carbon pools, most probably driven by the need to stabilize proteins and membranes, and remodel cell walls. In contrast, when nutrients were readily available, plants shifted their carbon investment towards amino acids related to osmoprotection, growth, antioxidants, and polyamines, leading to vigorous plants without appreciable levels of stress. Taken together, these findings demonstrate that D. antarctica displays differential physiological performances to cope with adverse conditions depending on resource availability, allowing it to maximize stress tolerance without jeopardizing photosynthetic capacity.


Asunto(s)
Nutrientes , Fotosíntesis , Suelo , Carbono
2.
Ecol Lett ; 26(4): 549-562, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36750322

RESUMEN

In recent years, attempts have been made in linking pressure-volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An ) and leaf mass per area (LMA). We measured gas exchange, pressure-volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An , capacitance and the turgor loss point (πtlp ) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.


Asunto(s)
Magnoliopsida , Hojas de la Planta , Hojas de la Planta/fisiología , Fotosíntesis , Nitrógeno , Carbono
3.
Plants (Basel) ; 11(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432839

RESUMEN

Global warming and changes in land use are some of the main threats to high mountain species. Both can interact in ways not yet assessed. In this study, we evaluated the photosynthetic responses of six common páramo species within a warming experiment using open-top chambers (OTC) in conserved páramo areas with different land use histories. We did not find significant differences in the photochemical performance of the species as measured through Fv/Fm, ETR, and NPQ in response to passive warming, indicating that warmed plants are not stressed. However, NPQ values were higher in recovering areas, especially in the driest and warmest months. Leaf transpiration, stomatal conductance, and Ci were not affected by the OTC or the land use history. The photosynthetic capacity, maximum photosynthetic capacity, and carboxylation rate of RuBisCO increased in response to warming but only in the area with no anthropogenic intervention. These results suggest that species will respond differently to warming depending on the history of páramo use, and therefore not all páramo communities will respond equally to climate change. In disturbed sites with altered soil conditions, plants could have a lower breadth of physiological response to warming.

4.
J Plant Physiol ; 272: 153689, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398716

RESUMEN

Extreme environments, such as deserts and high-elevation ecosystems, are very important from biodiversity and ecological perspectives. However, plant physiology at those sites has been scarcely studied, likely due to logistic difficulties. In the present study, leaf physiological traits in native plants were analyzed from arid zones across an elevational transect in Western China, from Turpan Basin to the Qinghai-Tibet Plateau (QTP) at Delingha. The aim of this study was to use leaf physiological traits to help identifying potentially threatened species and true extremophiles. Physiological measurements in the field, and particularly in situ measurements of gas exchange and chlorophyll fluorescence, have been determined to be useful to determine the current state of plants at a given environment. Using this approach plus a combination of leaf traits, several species performing particularly well at the QTP were identified, e.g. Hedysarum multijugum, as well as at Manas drylands, e.g. Peganum harmala and Setaria viridis. On the other hand, several species showed marked signs of severe stress, in particular a very low photosynthetic rate over its potential maximum, as well as other negative traits, like low water and/or nitrogen-use-efficiency, which should be considered in conservation plans. Interestingly, all C4 species studied except Setaria viridis were among the most stressed species. Despite their higher water use efficiency and drought-tolerance reputation, they presented a much larger photosynthesis depression than most C3 species. This is an intriguing and interesting observation that deserves further studies.


Asunto(s)
Ecosistema , Extremófilos , China , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantas , Tibet , Agua
5.
New Phytol ; 231(4): 1415-1430, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33959976

RESUMEN

Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.


Asunto(s)
Anemia , Helechos , Deshidratación , Desecación , Fotosíntesis , Hojas de la Planta , Agua
6.
J Exp Bot ; 72(7): 2600-2610, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33483750

RESUMEN

Resurrection plants are vascular species able to sustain extreme desiccation in their vegetative tissues. Despite its potential interest, the role of leaf anatomy in CO2 diffusion and photosynthesis under non-stressed conditions has not been explored in these species. Net CO2 assimilation (An) and its underlying diffusive, biochemical, and anatomical determinants were assessed in 10 resurrection species from diverse locations, including ferns, and homoiochlorophyllous and poikilochlorophyllous angiosperms. Data obtained were compared with previously published results in desiccation-sensitive ferns and angiosperms. An in resurrection plants was mostly driven by mesophyll conductance to CO2 (gm) and limited by CO2 diffusion. Resurrection species had a greater cell wall thickness (Tcw) than desiccation-sensitive plants, a feature associated with limited CO2 diffusion in the mesophyll, but also greater chloroplast exposure to intercellular spaces (Sc), which usually leads to higher gm. This combination enabled a higher An per Tcw compared with desiccation-sensitive species. Resurrection species possess unusual anatomical features that could confer stress tolerance (thick cell walls) without compromising the photosynthetic capacity (high chloroplast exposure). This mechanism is particularly successful in resurrection ferns, which display higher photosynthesis than their desiccation-sensitive counterparts.


Asunto(s)
Craterostigma , Dióxido de Carbono/metabolismo , Pared Celular , Cloroplastos/metabolismo , Células del Mesófilo , Fotosíntesis , Hojas de la Planta
7.
Plant J ; 101(4): 979-1000, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31953876

RESUMEN

In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/anatomía & histología , Fenómenos Fisiológicos de las Plantas , Plantas/química , Adaptación Biológica , Antioxidantes/metabolismo , Cloroplastos/ultraestructura , Clima Desértico , Ecosistema , Transporte de Electrón , Ambientes Extremos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Metabolismo Secundario
8.
Front Plant Sci ; 10: 843, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396243

RESUMEN

Salinization is one of the major causes of agricultural soil degradation worldwide. In arid and semi-arid regions with calcareous soils, phosphorus (P) deficiency further worsens the quality of salinized soils. Nonetheless, nutrient poor soils could be suitable of producing second-generation energy crops. Due to its high biomass production, Arundo donax L. (giant reed) is one of the most promising species for energy and second-generation biofuel production. A. donax can be propagated by micropropagation, an in vitro technique that produces high number of homogeneous plantlets. However, crop establishment is often compromised due to poor plantlet acclimatization to the soil environment. Arbuscular mycorrhizal fungi (AM) are components of soil-plant systems able to increase root phosphorus uptake and to confer the plant an increase tolerance to salinity with a consequent enhancement effect of plant growth and yield. In the present study, the relative importance of the early symbiosis establishment between AM fungi and A. donax micropropagated plantlets in the response to salt stress under low phosphorus availability was determined. A commercial inoculum which contained two different AM fungi species: Rhizophagus intraradices and Funneliformis mosseae was used. AM-symbionts (AM) and non-symbionts plants were grown at two phosphorus [2.5 µM (C) and 0.5 mM (P)] and three NaCl (1, 75 and 150 mM) concentrations in a room chamber under controlled conditions. After 5 weeks, AM root colonization was 60, 26 and 15% in 1, 75 and 150 mM NaCl-treated plants, respectively. At 1 and 75 mM NaCl, AM plants showed increased growth. In all saline treatments, AM plants had decreased Na+ uptake, Na+ root-to-shoot translocation, Na+/K+ ratio and increased P and K use efficiencies with respect to C and P plants. AM improved the nutritional status of A. donax plants by enhancing nutrient use efficiency rather than nutrient uptake. Increased phosphorus use efficiency in AM plants could have benefited ion (Na+ and K+) uptake and/or allocation and ultimately ameliorate the plant's response to saline conditions.

9.
Physiol Plant ; 167(4): 540-555, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30515832

RESUMEN

Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (Fv /fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt-solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50-200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial Fv /fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.


Asunto(s)
Briófitas/fisiología , Deshidratación , Fotosíntesis , Agua/fisiología
10.
Ecol Lett ; 21(9): 1372-1379, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30027556

RESUMEN

A compromise between carbon assimilation and structure investment at the leaf level is broadly accepted, yet the relationship between net assimilation per area (An ) and leaf mass per area has been elusive. We propose bulk modulus of elasticity (ε) as a suitable parameter to reflect both leaf structure and function, and an inverse relationship between ε and An and mesophyll conductance (gm ) is postulated. Using data for An , gm and ε from previous studies and new measurements on a set of 20 species covering all major growth forms, a negative relationship between An or gm and ε was observed. High ε was also related to low leaf capacitance and higher diffusive limitations to photosynthesis. In conclusion, ε emerges as a key trait linked with photosynthetic capacity across vascular plants, and its relationship with gm suggests the existence of a common mechanistic basis, probably involving a key role of cell walls.


Asunto(s)
Fotosíntesis , Tracheophyta , Dióxido de Carbono , Módulo de Elasticidad , Hojas de la Planta
11.
Plant Cell Environ ; 40(7): 1115-1126, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28060998

RESUMEN

The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots.


Asunto(s)
Micorrizas/fisiología , Fotosíntesis/fisiología , Raíces de Plantas/fisiología , Poaceae/microbiología , Biomasa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Glomeromycota/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/microbiología , Simbiosis
12.
Nature ; 428(6985): 821-7, 2004 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15103368

RESUMEN

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.


Asunto(s)
Clima , Geografía , Hojas de la Planta/fisiología , Biomasa , Ecosistema , Modelos Biológicos , Fenómenos Fisiológicos de la Nutrición , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Lluvia
13.
Ann Bot ; 92(2): 215-22, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12805082

RESUMEN

Gas exchange parameters, leaf nitrogen content and specific leaf area (SLA) were measured in situ on 73 C3 and five C4 plant species in Mallorca, west Mediterranean, to test whether species endemic to the Balearic Islands differed from widespread, non-endemic Mediterranean species and crops in their leaf traits and trait inter-relationships. Endemic species differed significantly from widespread species and crops in several parameters; in particular, photosynthetic capacity, on an area basis (A), was 20 % less in endemics than in non-endemics. Similar differences between endemics and non-endemics were found in parameters such as SLA and leaf nitrogen content per area (Na). Nevertheless, most of the observed differences were found only within the herbaceous deciduous species. These could be due to the fact that most of the non-endemic species within this group have adapted to ruderal areas, while none of the endemics occupies this kind of habitat. All the species-including the crops-showed a positive, highly significant correlation between photosynthetic capacity on a mass basis (Am), leaf nitrogen content on a mass basis (Nm) and SLA. However, endemic species had a lower Am for any given SLA and Nm. Hypotheses are presented to explain these differences, and their possible role in reducing the distribution of many endemic Balearic species is discussed.


Asunto(s)
Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Evolución Biológica , Productos Agrícolas/anatomía & histología , Productos Agrícolas/metabolismo , Ecología , Región Mediterránea , Especificidad de la Especie
14.
Physiol Plant ; 114(2): 231-240, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11903970

RESUMEN

Water stress experiments were performed with grapevines (Vitis vinifera L.) and other C3 plants in the field, in potted plants in the laboratory, and with detached leaves. It was found that, in all cases, the ratio of steady state chlorophyll fluorescence (Fs) normalized to dark-adapted intrinsic fluorescence (Fo) inversely correlated with non-photochemical quenching (NPQ). Also, at high irradiance, the ratio Fs/Fo was positively correlated with CO2 assimilation in air, with electron transport rate calculated from fluorescence, and with stomatal conductance, but no clear correlation was observed with qP. The significance of these relationships is discussed. The ratio Fs/Fo, measured with a portable instrument (PAM-2000) or with a remote sensing FIPAM system, provides a good method for the early detection of water stress, and may become a useful guide to irrigation requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...