Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Cell Mol Med ; 28(18): e70078, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39334509

RESUMEN

Myelodysplastic syndromes (MDS) are myeloid malignancies with heterogeneous genotypes and phenotypes, characterized by ineffective haematopoiesis and a high risk of progression towards acute myeloid leukaemia (AML). Prognosis for patients treated with hypomethylating agents (HMAs), as is azacytidine, the main drug used as frontline therapy for MDS is mostly based on cytogenetics and next generation sequencing (NGS) of the initial myeloid clone. Although the critical influence of the epigenetic landscape upon cancer cells survival and development as well on tumour environment establishment is currently recognized and approached within current clinical practice in MDS, the heterogenous response of the patients to epigenetic therapy is suggesting a more complex mechanism of action, as is the case of RNA methylation. In this sense, the newly emerging field of epitranscriptomics could provide a more comprehensive perspective upon the modulation of gene expression in malignancies, as is the proof-of-concept of MDS. We initially did RNA methylation sequencing on MDS patients (n = 6) treated with azacytidine and compared responders with non-responders. Afterwards, the genes identified were assessed in vitro and afterwards validated on a larger cohort of MDS patients treated with azacytidine (n = 58). Our data show that a more accurate prognosis could be based on analysing the methylome and thus we used methylation sequencing to differentially split high-grade MDS patients with identical demographical and cytogenetic features, between azacytidine responders and non-responders.


Asunto(s)
Azacitidina , Metilación de ADN , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/patología , Azacitidina/farmacología , Azacitidina/uso terapéutico , Femenino , Anciano , Masculino , Metilación de ADN/efectos de los fármacos , Persona de Mediana Edad , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Anciano de 80 o más Años , Epigénesis Genética/efectos de los fármacos , Análisis de Secuencia de ARN , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/farmacología , Pronóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica , Metilación de ARN
2.
Med Pharm Rep ; 97(3): 308-312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39234450

RESUMEN

Background and aims: This study explores the impact of emotional health on cancer patients, acknowledging the controversies and lack of high-quality data in the field, particularly for rare cancers and younger patients. It highlights the significant prevalence of depression and anxiety among cancer patients, the inadequacies in addressing mental health during and after treatment, and the inconsistencies in prevalence rates due to varying study methodologies. This study unravels the importance of data regarding mental health status in a clinical dataset to accompany the biological sample to be included in a biobank. Methods: The study utilized a questionnaire to evaluate the opinions of cancer patients, clinicians, and researchers regarding the inclusion of mental health data in clinical datasets accompanying biological samples in biobanks. The study involved 120 participants (40 from each group), and the data were analyzed using statistical methods. Results: The study found significant differences in the perceived importance of including mental health information among the three groups. Patients showed a higher tendency (87.9%) to consider mental health questions relevant compared to researchers (72.08%) and clinicians (62.08%). The first four questions regarding emotional well-being received the highest positive responses, particularly from patients (94.3%). The findings underline the importance of addressing the mental health of cancer patients, which is often overlooked. The study emphasizes the necessity for integrating mental health data in biobanks and increasing psychological support for cancer patients. Conclusions: There are clear differences in how patients, researchers, and clinicians value emotional and psychological aspects. The study underscores the need for better education on modern medical practices and the benefits of comprehensive patient care, including mental health considerations.

3.
Signal Transduct Target Ther ; 9(1): 201, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138146

RESUMEN

Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas Receptoras , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Terapia Molecular Dirigida
4.
Front Pharmacol ; 15: 1382399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799169

RESUMEN

Acute myeloid leukemia (AML) is a malignancy in the myeloid lineage that is characterized by symptoms like fatigue, bleeding, infections, or anemia, and it can be fatal if untreated. In AML, mutations in tyrosine kinases (TKs) lead to enhanced tumor cell survival. The most frequent mutations in TKs are reported in Fms-like tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), and KIT (tyrosine-protein kinase KIT), making these TKs potential targets for TK inhibitor (TKI) therapies in AML. With 30% of the mutations in TKs, mutated FLT3 is associated with poor overall survival and an increased chance of resistance to therapy. FLT3 inhibitors are used in FLT3-mutant AML, and the combination with hypomethylating agents displayed promising results. Midostaurin (MDS) is the first targeted therapy in FLT3-mutant AML, and its combination with chemotherapy showed good results. However, chemotherapies induce several side effects, and an alternative to chemotherapy might be the use of nanoparticles for better drug delivery, improved bioavailability, reduced drug resistance and induced toxicity. The herein study presents MDS-loaded gold nanoparticles and compares its efficacy with MDS alone, on both in vitro and in vivo models, using the FLT3-ITD-mutated AML cell line MV-4-11 Luc2 transfected to express luciferin. Our preclinical study suggests that MDS-loaded nanoparticles have a better tumor inhibitory effect than free drugs on in vivo models by controlling tumor growth in the first half of the treatment, while in the second part of the therapy, the tumor size was comparable to the cohort that was treatment-free.

6.
Stem Cell Rev Rep ; 20(1): 206-217, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922107

RESUMEN

Strategies to improve hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow can have a pivotal role in addressing iatrogenic bone-marrow insufficiency from chemo(radio)therapy and overcoming peripheral blood stem cell transplantation (PBSCT) limitations such as insufficient mobilization. Granulocyte-colony stimulating factor (G-CSF) represents the standard mobilization strategy for HSPC and has done so for more than three decades since its FDA approval. Its association with non-G-CSF agents is often employed for difficult HSPC mobilization. However, obtaining a synergistic effect between the two classes is limited by different timing and mechanisms of action. Based on our previous in vitro results, we tested the mobilization potential of human chorionic gonadotropin (HCG), alone and in combination with G-CSF in vivo in a murine study. Our results show an improved mobilization capability of the combination, which seems to act synergistically in stimulating hematopoiesis. With the current understanding of the dynamics of HSPCs and their origins in more primitive cells related to the germline, new strategies to employ the mobilization of hematopoietic progenitors using chorionic gonadotropins could soon become clinical practice.


Asunto(s)
Trasplante de Células Madre de Sangre Periférica , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos/farmacología , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Gonadotropina Coriónica/farmacología
7.
RSC Adv ; 13(45): 31641-31658, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37908656

RESUMEN

Apoptosis, the most extensively studied type of cell death, is known to play a crucial role in numerous processes such as elimination of unwanted cells or cellular debris, growth, control of the immune system, and prevention of malignancies. Defective regulation of apoptosis can trigger various diseases and disorders including cancer, neurological conditions, autoimmune diseases and developmental disorders. Knowing the nuances of the cell death type induced by a compound can help decipher which therapy is more effective for specific diseases. The detection of apoptotic cells using classic methods has brought significant contribution over the years, but innovative methods are quickly emerging and allow more in-depth understanding of the mechanisms, aside from a simple quantification. Due to increased sensitivity, time efficiency, pathway specificity and negligible cytotoxicity, these innovative approaches have great potential for both in vitro and in vivo studies. This review aims to shed light on the importance of developing and using novel nanoscale methods as an alternative to the classic apoptosis detection techniques.

8.
Cancers (Basel) ; 15(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38001653

RESUMEN

Lung cancer, primarily non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), is distinguished by its high prevalence and marked mortality rates. Traditional therapeutic approaches, encompassing chemotherapy, radiation, and targeted therapies, frequently show limited efficacy due to acquired resistance and notable side effects. The objective of this review is to introduce a fresh perspective on the therapeutic strategies for lung cancer, emphasizing interventions targeting the epigenetic alterations often seen in this malignancy. This review presents the most recent advancements in the field, focusing on both past and current clinical trials related to the modulation of methylation patterns using diverse molecular agents. Furthermore, an in-depth analysis of the challenges and advantages of these methylation-modifying drugs will be provided, assessing their efficacy as individual treatments and their potential for synergy when integrated with prevailing therapeutic regimens.

9.
J Cell Mol Med ; 27(19): 2864-2875, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667538

RESUMEN

Acute megakaryoblastic leukaemia (AMkL) is a rare subtype of acute myeloid leukaemia (AML) representing 5% of all reported cases, and frequently diagnosed in children with Down syndrome. Patients diagnosed with AMkL have low overall survival and have poor outcome to treatment, thus novel therapies such as CAR T cell therapy could represent an alternative in treating AMkL. We investigated the effect of a new CAR T cell which targets CD41, a specific surface antigen for M7-AMkL, against an in vitro model for AMkL, DAMI Luc2 cell line. The performed flow cytometry evaluation highlighted a percentage of 93.8% CAR T cells eGFP-positive and a limited acute effect on lowering the target cell population. However, the interaction between effector and target (E:T) cells, at a low ratio, lowered the cell membrane integrity, and reduced the M7-AMkL cell population after 24 h of co-culture, while the cytotoxic effect was not significant in groups with higher E:T ratio. Our findings suggest that the anti-CD41 CAR T cells are efficient for a limited time spawn and the cytotoxic effect is visible in all experimental groups with low E:T ratio.

10.
Blood Rev ; 61: 101100, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291017

RESUMEN

Multiple myeloma (MM) is a malignant plasma cell disorder accounting for around 1.8% of all neoplastic diseases. Nowadays, clinicians have a broad arsenal of drugs at their disposal for the treatment of MM, such as proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, bispecific antibodies, CAR T-cell therapies and antibody-drug conjugates. In this paper we briefly highlight essential clinical elements relating to proteasome inhibitors, such as bortezomib, carfilzomib and ixazomib. Studies suggest that the early use of immunotherapy may improve outcomes significantly. Therefore, in our review we specifically focus on the combination therapy of proteasome inhibitors with novel immunotherapies and/or transplant. A high number of patients develop PI resistance. Thus, we also review new generation PIs, such as marizomib, oprozomib (ONX0912) and delanzomib (CEP-18770) and their combinations with immunotherapies.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Bortezomib/uso terapéutico , Inmunoterapia , Antineoplásicos/uso terapéutico
11.
J Cell Mol Med ; 27(13): 1790-1796, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37317065

RESUMEN

Acquired haemophilia (AH) is a rare disorder characterized by bleeding in patients with no personal or family history of coagulation/clotting-related diseases. This disease occurs when the immune system, by mistake, generates autoantibodies that target FVIII, causing bleeding. Small RNAs from plasma collected from AH patients (n = 2), mild classical haemophilia (n = 3), severe classical haemophilia (n = 3) and healthy donors (n = 2), for sequencing by Illumina, NextSeq500. Based on bioinformatic analysis, AH patients were compared to all experimental groups and a significant number of altered transcripts were identified with one transcript being modified compared to all groups at fold change level. The Venn diagram shows that haemoglobin subunit alpha 1 was highlighted to be the common upregulated transcript in AH compared to classical haemophilia and healthy patients. Non-coding RNAs might play a role in AH pathogenesis; however, due to the rarity of HA, the current study needs to be translated on a larger number of AH samples and classical haemophilia samples to generate more solid data that can confirm our findings.


Asunto(s)
Hemofilia A , Humanos , Hemofilia A/genética , Factor VIII/genética , Hemorragia , Análisis de Secuencia de ARN , ARN no Traducido
12.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174009

RESUMEN

The human microbiome represents the diversity of microorganisms that live together at different organ sites, influencing various physiological processes and leading to pathological conditions, even carcinogenesis, in case of a chronic imbalance. Additionally, the link between organ-specific microbiota and cancer has attracted the interest of numerous studies and projects. In this review article, we address the important aspects regarding the role of gut, prostate, urinary and reproductive system, skin, and oral cavity colonizing microorganisms in prostate cancer development. Various bacteria, fungi, virus species, and other relevant agents with major implications in cancer occurrence and progression are also described. Some of them are assessed based on their values of prognostic or diagnostic biomarkers, while others are presented for their anti-cancer properties.

13.
Expert Opin Ther Pat ; 33(5): 339-348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37254751

RESUMEN

INTRODUCTION: Emerging immunotherapies are pushing the boundaries of cancer treatment, with chimeric antigen receptor (CAR)-T cell therapy being one of the most advanced. Due to the increasingly crowded CAR-T cell field, patenting and protecting the intellectual property of these CAR-T cells implies a good knowledge of the legal landscape. AREAS COVERED: The present manuscript focuses on the challenges regarding the patenting process of CAR-T technology, beginning with a description of the main characteristics of CAR-T cells and their functionalities, continuing with the legal landscape applicable to patenting processes, and concluding by presenting the potential strategies to overcome the impediments that can appear when trying to patent CAR-T cells. It is meant to offer insights for those who are exploring possible patenting options in CAR-T cells territory. PubMed and Patenscope databases were used for patent and literature searching (2013-2023). EXPERT OPINION: There is no one-size-fits-all solution in this matter and the medical evolution of this therapy will certainly bring out even more challenges. Comprehensive knowledge of the intellectual property, exposure to potential litigation, growing competition, and the high price of therapy, are strikingly relevant in the broader landscape. Future endeavors would be to take steps toward the harmonization of the CAR-T patenting procedure.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Patentes como Asunto , Inmunoterapia Adoptiva/métodos , Linfocitos T , Inmunoterapia/métodos
14.
Cancer Res ; 83(11): 1762-1767, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36880841

RESUMEN

The ubiquitin-proteasome system (UPS) is responsible for up to 90% of intracellular protein degradation. Alterations in UPS are extensively involved in the development and advancement of malignant pathologies. Thus, the components of the UPS can become potential targets for cancer therapeutics. KPC1 is an E3 ubiquitin ligase component of the UPS that regulates key pathways and processes in cancer. KPC1 sustains the ubiquitination of cytoplasmic p27, determining its elimination and transition between cell-cycle phases. KPC1 also regulates NF-κB signaling by inducing ubiquitination of p105 to allow subsequent proteasomal processing to the functional form p50. It has been shown that the KPC1-p50 duo is reduced or absent in multiple malignancies and that therapeutic reinforcement of the functional axis can exhibit significant tumor suppressor activity. Here, we highlight the potential role of KPC1 as a tumor suppressor by fully describing its crucial role in p27 signaling and the canonical NF-κB pathway.


Asunto(s)
FN-kappa B , Neoplasias , Humanos , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35804993

RESUMEN

It is possible to obtain diagnostically relevant data on the changes in biochemical elements brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological fluids. Prostate cancer and control groups included in this research generated almost similar SERS spectra, which means that the values of peak intensities present in SERS spectra can only give unspecific and limited information for distinguishing between the two groups. Our diagnostic algorithm for prostate cancer (PCa) differentiation was built using principal component analysis and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used in spectral data management in many studies and has shown promising results so far. In order to fully utilize the entire SERS spectrum and automatically determine the most meaningful spectral features that can be used to differentiate PCa from healthy patients, we perform a multivariate analysis on both the entire and specific spectral intervals. Using the PCA-LDA model, the prostate cancer and control groups are clearly distinguished in our investigation. The separability of the following two data sets is also evaluated using two alternative discrimination techniques: principal least squares discriminant analysis (PLS-DA) and principal component analysis-support vector machine (PCA-SVM).

17.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35890106

RESUMEN

The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia. Herein, we present a comprehensive overview of the natural compounds which demonstrated, in vitro studies, an effective anticancer activity by affecting key regulators of the glycolytic pathway such as glucose transporters, hexokinases, phosphofructokinase, pyruvate kinase or lactate dehydrogenase. Moreover, we assessed how phytochemicals could interfere in HIF-1 synthesis, stabilization, accumulation, and transactivation, emphasizing PI3K/Akt/mTOR and MAPK/ERK pathways as important signaling cascades in HIF-1 activation. Special consideration was given to cell culture-based metabolomics as one of the most sensitive, accurate, and comprising approaches for understanding the response of cancer cell metabolome to phytochemicals.

18.
J Hematol Oncol ; 15(1): 78, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672793

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy that affects an increasing number of patients worldwide. Despite all the efforts to understand its pathogenesis and develop new treatment modalities, MM remains an incurable disease. Novel immunotherapies, such as CAR T cell therapy (CAR) and bispecific T cell engagers (BiTE), are intensively targeting different surface antigens, such as BMCA, SLAMF7 (CS1), GPRC5D, FCRH5 or CD38. However, stem cell transplantation is still indispensable in transplant-eligible patients. Studies suggest that the early use of immunotherapy may improve outcomes significantly. In this review, we summarize the currently available clinical literature on CAR and BiTE in MM. Furthermore, we will compare these two T cell-based immunotherapies and discuss potential therapeutic approaches to promote development of new clinical trials, using T cell-based immunotherapies, even as bridging therapies to a transplant.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Mieloma Múltiple/tratamiento farmacológico , Selección de Paciente , Receptores Quiméricos de Antígenos/uso terapéutico
19.
Blood Rev ; 56: 100971, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35595613

RESUMEN

The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.


Asunto(s)
Leucemia Mieloide Aguda , Mieloma Múltiple , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Lenalidomida/uso terapéutico , Talidomida/farmacología , Talidomida/uso terapéutico , Bortezomib/uso terapéutico , Descubrimiento de Drogas , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/patología , Mieloma Múltiple/metabolismo , Enzimas Desubicuitinizantes/uso terapéutico
20.
Semin Cancer Biol ; 80: 183-194, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32428716

RESUMEN

The current era of cancer research has been continuously advancing upon identifying novel aspects of tumorigenesis and the principal mechanisms behind the unleashed proliferation, invasion, drug resistance and immortality of cancer cells in hopes of exploiting these findings to achieve a more effective treatment for cancer. In pursuit of this goal, the identification of the first components of an extremely important regulatory pathway in Drosophila melanogaster that largely determines cell fate during the developmental stages, ended up in the discovery of the highly sophisticated Hippo signaling cascade. Soon after, it was revealed that deregulation of the components of this pathway either via mutations or through epigenetic alterations can be observed in a vast variety of tumors and these alterations greatly contribute to the neoplastic transformation of cells, their survival, growth and resistance to therapy. As more hidden aspects of this pathway such as its widespread entanglement with other major cellular signaling pathways are continuously being uncovered, many researchers have sought over the past decade to find ways of therapeutic interventions targeting the major components of the Hippo cascade. To date, various approaches such as the use of exogenous targeting miRNAs and different molecular inhibitors have been recruited herein, among which naturally occurring compounds have shown a great promise. On such a basis, in the present work we review the current understanding of Hippo pathway and the most recent evidence on targeting its components using natural plant-derived phytochemicals.


Asunto(s)
Drosophila melanogaster , Neoplasias , Animales , Transformación Celular Neoplásica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Vía de Señalización Hippo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Proteínas Serina-Treonina Quinasas , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...