Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(4): 711-725, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831507

RESUMEN

Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Hipertensión , Animales , Humanos , Ratas , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Demencia Vascular/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Hipertensión/metabolismo , Neurogénesis , Estrés Oxidativo , Ratas Endogámicas SHR
2.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069144

RESUMEN

Our previous studies showed that in patients with brain diseases, neurotrophic factors in lacrimal fluid (LF) may change more prominently than in blood serum (BS). Since glial cell line-derived neurotrophic factor (GDNF) is involved in the control of neuronal networks in an epileptic brain, we aimed to assess the GDNF levels in LF and BS as well as the BDNF and the hypothalamic-pituitary-adrenocortical and inflammation indices in BS of patients with focal epilepsy (FE) and epilepsy and comorbid depression (FE + MDD) and to compare them with those of patients with major depressive disorder (MDD) and healthy controls (HC). GDNF levels in BS were similar in patients and HC and higher in FE taking valproates. GDNF levels in LF were significantly lower in all patient groups compared to controls, and independent of drugs used. GDNF concentrations in LF and BS positively correlated in HC, but not in patient groups. BDNF level was lower in BS of patients compared with HC and higher in FE + MDD taking valproates. A reduction in the GDNF level in LF might be an important biomarker of FE. Logistic regression models demonstrated that the probability of FE can be evaluated using GDNF in LF and BDNF in BS; that of MDD using GDNF in LF and cortisol and TNF-α in BS; and that of epilepsy with MDD using GDNF in LF and TNF-α and BDNF in BS.


Asunto(s)
Trastorno Depresivo Mayor , Epilepsias Parciales , Epilepsia , Humanos , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo , Depresión , Trastorno Depresivo Mayor/complicaciones , Epilepsia/complicaciones , Factor Neurotrófico Derivado de la Línea Celular Glial , Factor de Necrosis Tumoral alfa
3.
Biomedicines ; 11(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38137402

RESUMEN

Nonsuicidal self-injurious behavior (NSSI), prevalent in patients with non-psychotic mental disorders (NPMD), is associated with numerous adverse outcomes. Despite active research into the clinical and psychological aspects of NSSI, the underlying biological mechanisms remain obscure. Early adverse experiences are believed to induce long-lasting changes in neuroendocrine mechanisms of stress control playing a key role in NSSI development. The aim of the study was to evaluate parameters potentially predicting development of NSSI in female patients with NPMD and suicidal ideation. Eighty female patients over 18 years with NPMD and suicidal ideation (40 with and 40 without NSSI) and 48 age matching women without evidence of mental illness (healthy controls) were enrolled. Diagnostic interviews and self-report measures were used to assess childhood maltreatment, presence, frequency, and characteristics of suicidal and self-injurious thoughts and behaviors, the Beck Depression Inventory scale to assess severity of depression. Hypothalamic-pituitary-adrenal axis markers, hormones, and neurotrophic factors were measured in blood serum. The likelihood of developing NSSI in patients with NPMD and suicidal ideation was associated with early adverse family history and elevated adrenocorticotropic hormone levels. Dysregulation of hypothalamic-pituitary-adrenal axis as a result of early chronic stress experiences may represent critical biological mechanism promoting the development of NSSI behaviors in patients with NPMD.

4.
Mol Neurobiol ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995077

RESUMEN

A delicate balance between quiescence and division of the radial glia-like stem cells (RGLs) ensures continuation of adult hippocampal neurogenesis (AHN) over the lifespan. Transient or persistent perturbations of this balance due to a brain pathology, drug administration, or therapy can lead to unfavorable long-term outcomes such as premature depletion of the RGLs, decreased AHN, and cognitive deficit. Memantine, a drug used for alleviating the symptoms of Alzheimer's disease, and electroconvulsive seizure (ECS), a procedure used for treating drug-resistant major depression or bipolar disorder, are known strong AHN inducers; they were earlier demonstrated to increase numbers of dividing RGLs. Here, we demonstrated that 1-month stimulation of quiescent RGLs by either memantine or ECS leads to premature exhaustion of their pool and altered AHN at later stages of life and that aging of the brain modulates the ability of the quiescent RGLs to be recruited into the cell cycle by these AHN inducers. Our findings support the aging-related divergence of functional features of quiescent RGLs and have a number of implications for the practical assessment of drugs and treatments with respect to their action on quiescent RGLs at different stages of life in animal preclinical studies.

5.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446324

RESUMEN

Effects of modulation of glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) on acute neuroinflammatory response were studied in the dorsal (DH) and ventral (VH) parts of the hippocampus of male Wistar rats. Local neuroinflammatory response was induced by administration of bacterial lipopolysaccharide (LPS) to the DH. The modulation of GR and MR was performed by dexamethasone (GR activation), mifepristone, and spironolactone (GR and MR inhibition, respectively). Experimental drugs were delivered to the dentate gyrus of the DH bilaterally by stereotaxic injections. Dexamethasone, mifepristone, and spironolactone were administered either alone (basal conditions) or in combination with LPS (neuroinflammatory conditions). Changes in expression levels of neuroinflammation-related genes and morphology of microglia 3 days after intrahippocampal administration of above substances were assessed. Dexamethasone alone induced a weak proinflammatory response in the hippocampal tissue, while neither mifepristone nor spironolactone showed significant effects. During LPS-induced neuroinflammation, GR activation suppressed expression of selected inflammatory genes, though it did not prevent appearance of activated forms of microglia. In contrast to GR activation, GR or MR inhibition had virtually no influence on LPS-induced inflammatory response. The results suggest glucocorticosteroids ambiguously modulate specific aspects of neuroinflammatory response in the hippocampus of rats at molecular and cellular levels.


Asunto(s)
Mifepristona , Espironolactona , Ratas , Masculino , Animales , Espironolactona/farmacología , Mifepristona/farmacología , Ratas Wistar , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo , Hipocampo/metabolismo
6.
Biochemistry (Mosc) ; 88(5): 565-589, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331704

RESUMEN

The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.


Asunto(s)
Glucocorticoides , Hipocampo , Humanos , Animales , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Emociones , Plasticidad Neuronal , Mamíferos/metabolismo
7.
Biochemistry (Mosc) ; 88(4): 539-550, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37080939

RESUMEN

Among the responses in the early stages of stroke, activation of neurodegenerative and proinflammatory processes in the hippocampus is of key importance for the development of negative post-ischemic functional consequences. However, it remains unclear, what genes are involved in these processes. The aim of this work was a comparative study of the expression of genes encoding glutamate and GABA transporters and receptors, as well as inflammation markers in the hippocampus one day after two types of middle cerebral artery occlusion (according to Koizumi et al. method, MCAO-MK, and Longa et al. method, MCAO-ML), and direct pro-inflammatory activation by central administration of bacterial lipopolysaccharide (LPS). Differences and similarities in the effects of these challenges on gene expression were observed. Expression of a larger number of genes associated with activation of apoptosis and neuroinflammation, glutamate reception, and markers of the GABAergic system changed after the MCAO-ML and LPS administration than after the MCAO-MK. Compared with the MCAO-ML, the MCAO-MK and LPS challenges caused changes in the expression of more genes involved in glutamate transport. The most pronounced difference between the responses to different challenges was the changes in expression of calmodulin and calmodulin-dependent kinases genes observed after MCAO, especially MCAO-ML, but not after LPS. The revealed specific features of the hippocampal gene responses to the two types of ischemia and a pro-inflammatory stimulus could contribute to further understanding of the molecular mechanisms underlying diversity of the post-stroke consequences both in the model studies and in the clinic.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Ratas , Animales , Lipopolisacáridos/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/farmacología , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Accidente Cerebrovascular/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacología
8.
Biochemistry (Mosc) ; 88(3): 404-416, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076286

RESUMEN

Chronic alcohol consumption is characterized by disturbances of neuroplasticity. Brain-derived neurotrophic factor (BDNF) is believed to be critically involved in this process. Here we aimed to review actual experimental and clinical data related to BDNF participation in neuroplasticity in the context of alcohol dependence. As has been shown in experiments with rodents, alcohol consumption is accompanied by the brain region-specific changes of BDNF expression and by structural and behavioral impairments. BDNF reverses aberrant neuroplasticity observed during alcohol intoxication. According to the clinical data parameters associated with BDNF demonstrate close correlation with neuroplastic changes accompanying alcohol dependence. In particular, the rs6265 polymorphism within the BDNF gene is associated with macrostructural changes in the brain, while peripheral BDNF concentration may be associated with anxiety, depression, and cognitive impairment. Thus, BDNF is involved in the mechanisms of alcohol-induced changes of neuroplasticity, and polymorphisms within the BDNF gene and peripheral BDNF concentration may serve as biomarkers, diagnostic or prognostic factors in treatment of alcohol abuse.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/genética , Alcoholismo/complicaciones , Alcoholismo/psicología , Factor Neurotrófico Derivado del Encéfalo/genética , Consumo de Bebidas Alcohólicas/psicología , Etanol , Plasticidad Neuronal
9.
Biomedicines ; 10(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36551875

RESUMEN

Recently, we have shown the differences in the early response of corticosterone and inflammatory cytokines in the hippocampus and frontal cortex (FC) of rats with middle cerebral artery occlusion (MCAO), according to the methods of Longa et al. (LM) and Koizumi et al. (KM) which were used as alternatives in preclinical studies to induce stroke in rodents. In the present study, corticosterone and proinflammatory cytokines were assessed 3 months after MCAO. The most relevant changes detected during the first days after MCAO became even more obvious after 3 months. In particular, the MCAO-KM (but not the MCAO-LM) group showed significant accumulation of corticosterone and IL1ß in both the ipsilateral and contralateral hippocampus and FC. An accumulation of TNFα was detected in the ipsilateral hippocampus and FC in the MCAO-KM group. Thus, unlike the MCAO-LM, the MCAO-KM may predispose the hippocampus and FC of rats to long-lasting bilateral corticosterone-dependent distant neuroinflammatory damage. Unexpectedly, only the MCAO-LM rats demonstrated some memory deficit in a one-trial step-through passive avoidance test. The differences between the two MCAO models, particularly associated with the long-lasting increase in glucocorticoid and proinflammatory cytokine accumulation in the limbic structures in the MCAO-KM, should be considered in the planning of preclinical experiments, and the interpretation and translation of received results.

10.
Curr Issues Mol Biol ; 44(12): 6290-6305, 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36547090

RESUMEN

Neuropsychiatric complications, in particular cognitive and depressive disorders, are common consequences of ischemic stroke (IS) and complicate the rehabilitation, quality of life, and social adaptation of patients. The hypothalamic-pituitary-adrenal (HPA) system, sympathoadrenal medullary system (SAMS), and inflammatory processes are believed to be involved in the pathogenesis of these disorders. This study aimed to explore these systems in IS patients, including those with post-stroke cognitive and depressive disorders, within a year after IS. Indices of the HPA axis, inflammatory system, and SAMS were measured in blood serum (cortisol, interleukin-6 (IL-6)), plasma (adrenocorticotropic hormone), and saliva (cortisol, α-amylase). During one year after mild/moderate IS (NIHSS score 5.9 ± 4.3), serum cortisol and salivary α-amylase levels remained elevated in the total cohort. In the group with further cognitive decline, serum and salivary cortisol levels were elevated during the acute period of IS. In the group with poststroke depressive disorder, salivary α-amylase was constantly elevated, while serum IL-6 was minimal during the acute period. The results suggest prolonged hyperactivation of the HPA axis and SAMS after IS. Specifically, post-stroke cognitive impairment was associated with hyperactivation of the HPA axis during the acute IS period, while post-stroke depressive disorder was associated with the chronic inflammatory process and hyperactivation of SAMS during the follow-up period.

11.
J Affect Disord ; 318: 409-413, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116600

RESUMEN

BACKGROUND: Many studies indicate a significant role of GDNF in the pathogenesis of the mood disorders, including bipolar disorder (BD) and major depressive disorder (MDD). Potentially, neurotrophic factors in lacrimal fluid (LF) could become biomarkers of various specific disorders. The aim of this study was to assess GDNF levels in LF and blood serum (BS) of patients with a current depressive episode (cDE). METHODS: We studied the glial cell line-derived neurotrophic factor (GDNF) concentration in the LF and BS of 39 healthy controls and 137 patients with a current depressive episode (cDE) (both subgroups members were 20-49 years): BD - 46 patients, MDD - 91 patients. RESULTS: GDNF concentration in BS of women with MDD was significantly lower than in men. In BD patients, univariate linear regression analysis revealed significant correlations between GDNF concentration in the LF and the use of anxiolytics or antidepressants. These correlations were confirmed by the multivariate linear regression analysis. A significant correlation between GDNF concentrations in the LF and BS was found in controls. LIMITATIONS: The unequal proportion of men in the BD group did not permit adjusting GDNF concentrations for sex. The collected LF was stimulated, which could influence GDNF levels. It should also be noted that the patients included in the study were not treatment- naïve. CONCLUSIONS: Our findings suggest that GDNF concentration in LF could be a biomarker of the cDE (both unipolar and bipolar), though the sensitivity of this potential biomarker may be lower in depressive patients with anxiety symptoms.


Asunto(s)
Trastorno Depresivo Mayor , Factor Neurotrófico Derivado de la Línea Celular Glial , Adulto , Ansiolíticos , Antidepresivos , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/análisis , Humanos , Masculino , Persona de Mediana Edad , Suero/química , Lágrimas/química , Adulto Joven
12.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142325

RESUMEN

BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes and neurotrophic factor systems are involved in pathogenesis of both epilepsy and depressive disorders. The study aimed to explore these systems in patients with focal epilepsy (PWE, n = 76), epilepsy and comorbid depression (PWCED n = 48), and major depressive disorder (PWMDD, n = 62) compared with healthy controls (HC, n = 78). METHODS: Parameters of the HPA axis, neurotrophic factors, and TNF-α were measured in blood serum along with the hemogram. RESULTS: Serum cortisol level was augmented in PWE, PWCED, and PWMDD compared with HC and was higher in PWMDD than in PWE. Serum cortisol negatively correlated with Mini-Mental State Examination (MMSE) score in PWE, and positively with depression inventory-II (BDI-II) score in PWMDD. Only PWMDD demonstrated elevated plasma ACTH. Serum TNF-α, lymphocytes, and eosinophils were augmented in PWMDD; monocytes elevated in PWE and PWCED, while neutrophils were reduced in PWE and PWMDD. Serum BDNF was decreased in PWE and PWCED, CNTF was elevated in all groups of patients. In PWE, none of above indices depended on epilepsy etiology. CONCLUSIONS: The results confirm the involvement of HPA axis and inflammatory processes in pathogenesis of epilepsy and depression and provide new insights in mechanisms of epilepsy and depression comorbidity.


Asunto(s)
Trastorno Depresivo Mayor , Epilepsias Parciales , Epilepsia , Hormona Adrenocorticotrópica , Factor Neurotrófico Derivado del Encéfalo , Factor Neurotrófico Ciliar , Comorbilidad , Depresión , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Epilepsia/complicaciones , Epilepsia/epidemiología , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Suero , Factor de Necrosis Tumoral alfa
13.
RSC Med Chem ; 13(7): 822-830, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35923717

RESUMEN

NMDA (N-methyl-d-aspartate) receptor antagonists are promising tools for the treatment of a wide variety of central nervous system impairments including major depressive disorder. We present here the activity optimization process of a biphenyl-based NMDA negative allosteric modulator (NAM) guided by free energy calculations, which led to a 100 times activity improvement (IC50 = 50 nM) compared to a hit compound identified in virtual screening. Preliminary calculation results suggest a low affinity for the human ether-a-go-go-related gene ion channel (hERG), a high affinity for which was earlier one of the main obstacles for the development of first-generation NMDA-receptor negative allosteric modulators. The docking study and the molecular dynamics calculations suggest a completely different binding mode (ifenprodil-like) compared to another biaryl-based NMDA NAM EVT-101.

14.
Mol Vis ; 28: 39-47, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656168

RESUMEN

Purpose: To study glial cell line-derived neurotrophic factor (GDNF) concentrations in aqueous humor (AH), lacrimal fluid (LF), and blood serum (BS) in patients with age-related cataract and primary open-angle glaucoma (POAG). Methods: GDNF was studied in AH, LF, and BS in 47 patients with age-related cataract, and 30 patients with POAG combined with cataract (one eye in each person). AH was sampled during cataract surgery. Results: GDNF concentration (pg/ml) in patients with POAG and cataract was lower than in cataract-only patients (p<0.001), both in AH (46.3±31.1 versus 88.9±46.9) and in LF (222±101 versus 344±134). The difference was not significant for the GDNF concentration in BS (194±56 versus 201±45). In the earlier (early and moderate) stages of POAG, compared to later (advanced and severe) stages, GDNF concentration was significantly lower in LF (176±99 versus 258±91; p = 0.027) and in BS (165±42 versus 217±55; p = 0.017), while GDNF concentration in AH showed an insignificant difference (40.0±25.7 versus 51.1±34.7). In patients with POAG, GDNF concentration in LF and BS was inversely correlated with the Humphrey visual field index: Pearson's correlation coefficient r = -0.465 (p = 0.01) for LF and r = -0.399 (p = 0.029) for BS. When compared to the cataract group, patients in the earlier stages of POAG showed significantly lower GDNF concentrations in all studied biologic fluids. Conclusions: Compared to patients with cataract only, GDNF levels are lower in the AH and LF of patients with POAG and cataract, especially at earlier stages of the disease (at these stages, the GDNF level in BS is also lower). At earlier stages of POAG, compared to later stages, GDNF content is lower in LF and BS. These data could serve as a reason for the therapeutic use of GDNF in patients with POAG.


Asunto(s)
Extracción de Catarata , Catarata , Glaucoma de Ángulo Abierto , Humor Acuoso , Glaucoma de Ángulo Abierto/cirugía , Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos
15.
Biomedicines ; 10(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35625876

RESUMEN

Glucocorticoid-dependent mechanisms of inflammation-mediated distant hippocampal damage are discussed with a focus on the consequences of traumatic brain injury. The effects of glucocorticoids on specific neuronal populations in the hippocampus depend on their concentration, duration of exposure and cell type. Previous stress and elevated level of glucocorticoids prior to pro-inflammatory impact, as well as long-term though moderate elevation of glucocorticoids, may inflate pro-inflammatory effects. Glucocorticoid-mediated long-lasting neuronal circuit changes in the hippocampus after brain trauma are involved in late post-traumatic pathology development, such as epilepsy, depression and cognitive impairment. Complex and diverse actions of the hypothalamic-pituitary-adrenal axis on neuroinflammation may be essential for late post-traumatic pathology. These mechanisms are applicable to remote hippocampal damage occurring after other types of focal brain damage (stroke, epilepsy) or central nervous system diseases without obvious focal injury. Thus, the liaisons of excessive glucocorticoids/dysfunctional hypothalamic-pituitary-adrenal axis with neuroinflammation, dangerous to the hippocampus, may be crucial to distant hippocampal damage in many brain diseases. Taking into account that the hippocampus controls both the cognitive functions and the emotional state, further research on potential links between glucocorticoid signaling and inflammatory processes in the brain and respective mechanisms is vital.

16.
Mol Neurobiol ; 59(2): 1151-1167, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34855115

RESUMEN

Time course of changes in neuroinflammatory processes in the dorsal and ventral hippocampus was studied during the early period after lateral fluid percussion-induced neocortical traumatic brain injury (TBI) in the ipsilateral and contralateral hemispheres. In the ipsilateral hippocampus, neuroinflammation (increase in expression of pro-inflammatory cytokines) was evident from day 1 after TBI and ceased by day 14, while in the contralateral hippocampus, it was mainly limited to the dorsal part on day 1. TBI induced an increase in hippocampal corticosterone level on day 3 bilaterally and an accumulation of Il1b on day 1 in the ipsilateral hippocampus. Activation of microglia was observed from day 7 in different hippocampal areas of both hemispheres. Neuronal cell loss was detected in the ipsilateral dentate gyrus on day 3 and extended to the contralateral hippocampus by day 7 after TBI. The data suggest that TBI results in distant hippocampal damage (delayed neurodegeneration in the dentate gyrus and microglia proliferation in both the ipsilateral and contralateral hippocampus), the time course of this damage being different from that of the neuroinflammatory response.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neocórtex , Enfermedades Neuroinflamatorias , Ratas , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular , Proliferación Celular , Citocinas/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Neocórtex/metabolismo , Enfermedades Neuroinflamatorias/metabolismo
17.
Front Neurosci ; 15: 781964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955730

RESUMEN

Progress in treating ischemic stroke (IS) and its delayed consequences has been frustratingly slow due to the insufficient knowledge on the mechanism. One important factor, the hypothalamic-pituitary-adrenocortical (HPA) axis is mostly neglected despite the fact that both clinical data and the results from rodent models of IS show that glucocorticoids, the hormones of this stress axis, are involved in IS-induced brain dysfunction. Though increased cortisol in IS is regarded as a biomarker of higher mortality and worse recovery prognosis, the detailed mechanisms of HPA axis dysfunction involvement in delayed post-stroke cognitive and emotional disorders remain obscure. In this review, we analyze IS-induced HPA axis alterations and supposed association of corticoid-dependent distant hippocampal damage to post-stroke brain disorders. A translationally important growing point in bridging the gap between IS pathogenesis and clinic is to investigate the involvement of the HPA axis disturbances and related hippocampal dysfunction at different stages of SI. Valid models that reproduce the state of the HPA axis in clinical cases of IS are needed, and this should be considered when planning pre-clinical research. In clinical studies of IS, it is useful to reinforce diagnostic and prognostic potential of cortisol and other HPA axis hormones. Finally, it is important to reveal IS patients with permanently disturbed HPA axis. Patients-at-risk with high cortisol prone to delayed remote hippocampal damage should be monitored since hippocampal dysfunction may be the basis for development of post-stroke cognitive and emotional disturbances, as well as epilepsy.

18.
Biomedicines ; 9(12)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34944656

RESUMEN

Acute cerebral ischemia induces distant inflammation in the hippocampus; however, molecular mechanisms of this phenomenon remain obscure. Here, hippocampal gene expression profiles were compared in two experimental paradigms in rats: middle cerebral artery occlusion (MCAO) and intracerebral administration of lipopolysaccharide (LPS). The main finding is that 10 genes (Clec5a, CD14, Fgr, Hck, Anxa1, Lgals3, Irf1, Lbp, Ptx3, Serping1) may represent key molecular links underlying acute activation of immune cells in the hippocampus in response to experimental ischemia. Functional annotation clustering revealed that these genes built the same clusters related to innate immunity/immunity/innate immune response in all MCAO differentially expressed genes and responded to the direct pro-inflammatory stimulus group. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses also indicate that LPS-responding genes were the most abundant among the genes related to "positive regulation of tumor necrosis factor biosynthetic process", "cell adhesion", "TNF signaling pathway", and "phagosome" as compared with non-responding ones. In contrast, positive and negative "regulation of cell proliferation" and "HIF-1 signaling pathway" mostly enriched with genes that did not respond to LPS. These results contribute to understanding genomic mechanisms of the impact of immune/inflammatory activation on expression of hippocampal genes after focal brain ischemia.

19.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948340

RESUMEN

Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1ß in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1ß beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1ß release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.


Asunto(s)
Corticosterona/metabolismo , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Inflamación , Accidente Cerebrovascular/etiología , Animales , Lóbulo Frontal/patología , Hipocampo/patología , Masculino , Ratas , Ratas Wistar , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
20.
J Neurochem ; 159(5): 800-803, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480345

RESUMEN

This Editorial highlights a remarkable study in the current issue of the Journal of Neurochemistry in which Ganesana & Venton (2021) report new data showing that brain ischemia does not elicit transient adenosine release in the CA1 hippocampal area. Using fast-scan cyclic voltammetry at a carbon-fiber microelectrode implanted in the CA1 subfield of the hippocampus, it was shown that none of three different ischemia/reperfusion models could increase spontaneous, transient adenosine release, and more severe models even suppressed this presumably neuroprotective release. Since the authors have previously shown that in the caudate putamen, ischemia increased the frequency of spontaneous adenosine release (Ganesana & Venton, 2018), the new data may disclose a mechanism underlying important regional differences in rapid neuroprotective adenosine signaling. The phenomenon of selective susceptibility of the hippocampus to ischemia/hypoxia is well-documented, and the reported failure of its CA1 area to respond to ischemia by rapid adenosine release may be indicative of an insufficiency of this neuroprotective mechanism contributing to hippocampal vulnerability.


Asunto(s)
Adenosina , Isquemia Encefálica , Hipocampo , Humanos , Isquemia , Microelectrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...