RESUMEN
Inspired by the interesting natural antimicrobial properties of honey, biohybrid composite materials containing a low-fouling polymer hydrogel network and an encapsulated antimicrobial peroxide-producing enzyme have been developed. These synergistically combine both passive and active mechanisms for reducing microbial bacterial colonization. The mechanical properties of these materials were assessed using compressive mechanical analysis, which revealed these hydrogels possessed tunable mechanical properties with Young's moduli ranging from 5 to 500 kPa. The long-term enzymatic activities of these materials were also assessed over a 1-month period using colorimetric assays. Finally, the passive low-fouling properties and active antimicrobial activity against a leading opportunistic pathogen, Staphylococcus epidermidis, were confirmed using bacterial cell counting and bacterial adhesion assays. This study resulted in non-adhesive substrate-permeable antimicrobial materials, which could reduce the viability of planktonic bacteria by greater than 7 logs. It is envisaged these new biohybrid materials will be important for reducing bacterial adherence in a range of industrial applications.
Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana , Materiales Biocompatibles/química , Miel , Hidrogeles/química , Polímeros/química , Staphylococcus epidermidis/crecimiento & desarrollo , Ensayo de Materiales , Staphylococcus epidermidis/efectos de los fármacosRESUMEN
The rise of antimicrobial resistance is at the forefront of global healthcare challenges, with antimicrobial infections on track to overtake cancer as a leading cause of death by 2050. The high effectiveness of antimicrobial enzymes used in combination with the protective, inert nature of polymer materials represents a highly novel approach toward tackling microbial infections. Herein, we have developed biohybrid glucose oxidase-loaded semipermeable polymersome nanoreactors, formed using polymerization-induced self-assembly, and demonstrate for the first time their ability to "switch on" their antimicrobial activity in response to glucose, a ubiquitous environmental stimulus. Using colony-counting assays, it was demonstrated that the nanoreactors facilitate up to a seven-log reduction in bacterial growth at high glucose concentrations against a range of Gram-negative and Gram-positive bacterial pathogens, including a methicillin-resistant Staphylococcus aureus clinical isolate. After demonstrating the antimicrobial properties of these materials, their toxicity against human fibroblasts was assessed and the dosage of the nanoreactors further optimized for use as nontoxic agents against Gram-positive bacteria under physiological blood glucose concentrations. It is envisaged that such biohybrid nanomaterials will become an important new class of antimicrobial biomaterials for the treatment of bacterial infections.
Asunto(s)
Antibacterianos/química , Miel , Nanoestructuras/química , Nanotecnología/métodos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Reactores Biológicos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Humanos , Ensayo de Materiales , Nanoestructuras/toxicidad , PolimerizacionRESUMEN
In vitro oxidative stability of two siloxane poly(urethane urea)s synthesized using 4,4'-methylenediphenyl diisocyanate (in SiPUU-1) and Isophorone diisocyanate (in SiPUU-2) linked soft segment was evaluated using 20% H2 O2 and 0.1 mol/L CoCl2 solution at 37°C under 150% strain. Commercially available siloxane polyurethane (Elast-Eon™ 2A) and polyether polyurethane (ChronoThane P™ 80A) were used as negative and positive controls, respectively. ChronoSil™ 80A was included as another commercially available polycarbonate polyurethane. Scanning electron microscopic (SEM) examinations, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and molecular weight reduction revealed the extensive degradation of ChronoThane P™ 80A after 90 days while SiPUU-1, SiPUU-2 and Elast-Eon™ 2A showed no noticeable surface degradation. ChronoSil™ 80A showed degradation in both soft and hard segments. Tensile testing was carried out only on unstrained polyurethanes for 90 days. ChronoThane P™ 80A showed 35% loss in ultimate tensile strength and it was only 13-14% for SiPUU-1 and Elast-Eon™ 2A. However, the tensile strength of ChronoSil™ 80A was not significantly affected. The results of this study proved that SiPUU-1 possess oxidative stability comparable with Elast-Eon™ 2A. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2557-2565, 2019.
Asunto(s)
Materiales Biocompatibles/química , Elastómeros/química , Ensayo de Materiales , Poliuretanos/química , Siloxanos/química , Resistencia a la Tracción , Oxidación-ReducciónRESUMEN
A series of siloxane poly(urethane-urea) (SiPUU) were developed by incorporating a macrodiol linked with a diisocyanate to enhance mixing of hard and soft segments (SS). The effect of this modification on morphology, surface properties, surface elemental composition, and creep resistance was investigated. The linked macrodiol was prepared by reacting α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane)(PDMS) or poly(hexamethylene oxide) (PHMO) with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), or isophorone diisocyanate (IPDI). SiPUU with PHMO-MDI-PHMO and PHMO-IPDI-PHMO linked macrodiols showed enhanced creep resistance and recovery when compared with a commercial biostable polyurethane, Elast-Eon™ 2A. Small and wide-angle X-ray scattering data were consistent with significant increase of hydrogen bonding between hard and SS with linked-macrodiols, which improved SiPUU's tensile stress and tear strengths. These SiPUU were hydrophobic with contact angle higher than 101° and they had low water uptake (0.7%·w/w of dry mass). They also had much higher siloxane concentration on the surface compared to that in the bulk. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 112-121, 2019.
Asunto(s)
Prótesis Valvulares Cardíacas , Poliuretanos/química , Siloxanos/química , Humanos , Propiedades de SuperficieRESUMEN
Zwitterionic polymers, including polyampholytes and polybetaines, are polymers with both positive and negative charges incorporated into their structure. They are a unique class of smart materials with great potential in a broad range of applications in nanotechnology, biomaterials science, nanomedicine and healthcare, as additives for bulk construction materials and crude oil, and in water remediation. In this Tutorial Review, we aim to highlight their structural diversity and design criteria, and their preparation using modern techniques. Their behavior, both in solution and at surfaces, will be examined under a range of environmental conditions. Finally, we will exemplify how their unique behaviors give rise to specific properties tailored to a selection of their numerous applications.
RESUMEN
Mixed macrodiol based siloxane poly(urethane-urea)s (SiPUU) having number average molecular weights in the range 87-129 kDa/mol were synthesized to give elastomers with high tensile and tear strengths required to fabricate artificial heart valves. Polar functional groups were introduced into the soft segment to improve the poor segmental compatibility of siloxane polyurethanes. This was achieved by linking α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) (PDMS) or poly(hexamethylene oxide) (PHMO) macrodiols with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI) prior to polyurethane synthesis. The hard segment was composed of MDI, and a 1:1 mixture of 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyldisiloxane and 1,2-ethylene diamine. We report the effect of urethane linkers in soft segments on properties of the SiPUU. PHMO linked with either MDI or IPDI produced SiPUU with the highest tensile and tear strengths. Linking PDMS hardly affected the tensile strength; however, the tear strength was improved. The stress-strain curves showed no plastic deformation region typically observed for conventional polyurethanes indicating good creep resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1712-1720, 2018.
Asunto(s)
Materiales Biocompatibles/química , Dimetilpolisiloxanos/química , Elastómeros/química , Prótesis Valvulares Cardíacas , Ensayo de Materiales , Poliuretanos/química , Animales , Línea Celular , Ratones , Resistencia a la TracciónRESUMEN
RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired.
Asunto(s)
Sistemas de Liberación de Medicamentos , Polimerizacion , Polímeros/química , Animales , Materiales Biocompatibles/química , Humanos , Peso Molecular , Polímeros/efectos adversos , Tionas/químicaRESUMEN
We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%.
RESUMEN
This study examined the suitability of a family of biodegradable polyurethanes (PUs) NovoSorb developed for the vascular stent application. These segmented PUs are formulated to be biodegradable using degradable polyester and PU blocks. A series of PUs comprising different hard segment weight percentage ranging from 60 to 100 were investigated. The mechanical properties of the PUs were evaluated before and after gamma sterilization to assess their suitability for vascular implants. The real-time (PBS/37°C/pH 7.4) hydrolytic degradation studies were carried out under sterile conditions and PU glass transition temperature, molecular weight, and mass loss at 3, 6, and 9 months were determined. The viability and growth of Human Umbilical Vein Endothelial Cells (HUVEC) on PU surfaces were determined to assess the effect of PU degradation. The effect of coating of extracellular matrix (ECM) components on cell viability was also investigated. The study showed that the PUs possess excellent mechanical properties exhibiting high tensile strength (41-56 MPa) and tensile modulus (897-1496 MPa). The PU films maintained mechanical strength during the early phase of the degradation but lost strength at latter stages. The unmodified polymer surface of each PU promotes endothelial cell growth and proliferation, with a HUVEC retention rate of >70%.
Asunto(s)
Implantes Absorbibles , Prótesis Vascular , Vasos Coronarios , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Poliuretanos , Stents , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Poliuretanos/química , Poliuretanos/farmacologíaRESUMEN
AIM: Influenza virus remains a major threat, with outbreaks continuing to occur. Few treatment options are available and drug resistance can emerge rapidly. New drugs that can quickly be adapted to virus mutations are needed. Several highly effective siRNAs targeting influenza that inhibit virus replication are known; however, effective delivery of these siRNAs remains a challenge. The aim of this study was to demonstrate the safety and efficacy of ABA triblock copolymer-delivered siRNA to inhibit influenza virus replication in vivo. MATERIALS & METHODS: We report on the delivery of a siRNA targeting the influenza virus in chicken embryos using an ABA triblock copolymer prepared by reversible addition-fragmentation chain-transfer polymerization, containing a central cationic block and two outer hydrophilic polyethylene glycol blocks. RESULTS: A significant reduction of virus titer was observed with the polymer/anti-influenza siRNA complexes, whereas the control with polymer/control siRNA complexes showed no effect. CONCLUSION: These data suggest that a reversible addition-fragmentation chain transfer-based siRNA delivery platform may be suitable for combating infectious diseases in vivo.
Asunto(s)
Infecciones por Orthomyxoviridae/terapia , Orthomyxoviridae/genética , Polímeros/química , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Animales , Línea Celular , Embrión de Pollo , Terapia Genética , Orthomyxoviridae/fisiología , Infecciones por Orthomyxoviridae/genética , Polimerizacion , ARN Interferente Pequeño/genética , Replicación ViralRESUMEN
In this work a series of ABA tri-block copolymers was prepared from oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475)) and N,N-dimethylaminoethyl methacrylate (DMAEMA) to investigate the effect of polymer composition on cell viability, siRNA uptake, serum stability and gene silencing. Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was used as the method of polymer synthesis as this technique allows the preparation of well-defined block copolymers with low polydispersity. Eight block copolymers were prepared by systematically varying the central cationic block (DMAEMA) length from 38 to 192 monomer units and the outer hydrophilic block (OEGMA(475)) from 7 to 69 units. The polymers were characterized using size exclusion chromatography and (1)H NMR. Chinese Hamster Ovary-GFP and Human Embryonic Kidney 293 cells were used to assay cell viability while the efficiency of block copolymers to complex with siRNA was evaluated by agarose gel electrophoresis. The ability of the polymer-siRNA complexes to enter into cells and to silence the targeted reporter gene enhanced green fluorescent protein (EGFP) was measured by using a CHO-GFP silencing assay. The length of the central cationic block appears to be the key structural parameter that has a significant effect on cell viability and gene silencing efficiency with block lengths of 110-120 monomer units being the optimum. The ABA block copolymer architecture is also critical with the outer hydrophilic blocks contributing to serum stability and overall efficiency of the polymer as a delivery system.
Asunto(s)
Cationes/química , Silenciador del Gen , Técnicas de Transferencia de Gen , Polimerizacion , Polímeros/química , Animales , Células CHO , Supervivencia Celular , Cromatografía en Gel , Cricetinae , Electroforesis en Gel de Agar , Células HEK293 , Humanos , Microscopía de Fuerza Atómica , Peso Molecular , Nanopartículas/ultraestructura , Polietilenglicoles/química , Polímeros/síntesis química , ARN Interferente Pequeño/metabolismo , Suero/metabolismoRESUMEN
Biodegradable polyurethanes offer advantages in the design of injectable or preformed scaffolds for tissue engineering and other medical implant applications. We have developed two-part injectable prepolymer systems (prepolymer A and B) consisting of lactic acid and glycolic acid based polyester star polyols, pentaerythritol (PE) and ethyl lysine diisocyanate (ELDI). This study reports on the formulation and properties of a series of cross linked polyurethanes specifically developed for orthopaedic applications. Prepolymer A was based on PE and ELDI. Polyester polyols (prepolymer B) were based on PE and dl-lactic acid (PEDLLA) or PE and glycolic acid (PEGA) with molecular weights 456 and 453, respectively. Several cross linked porous and non-porous polyurethanes were prepared by mixing and curing prepolymers A and B and their mechanical and thermal properties, in vitro (PBS/37 degrees C/pH 7.4) and in vivo (sheep bi-lateral) degradation evaluated. The effect of incorporating beta-tricalcium phosphate (beta-TCP, 5 microns, 10 wt.%) was also investigated. The cured polymers exhibited high compressive strength (100-190 MPa) and modulus (1600-2300 MPa). beta-TCP improved mechanical properties in PEDLLA based polyurethanes and retarded the onset of in vitro and in vivo degradation. Sheep study results demonstrated that the polymers in both injectable and precured forms did not cause any surgical difficulties or any adverse tissue response. Evidence of new bone growth and the gradual degradation of the polymers were observed with increased implant time up to 6 months.
Asunto(s)
Materiales Biocompatibles , Poliuretanos , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Glicolatos/química , Glicolatos/metabolismo , Implantes Experimentales , Inyecciones , Ácido Láctico/química , Ácido Láctico/metabolismo , Ensayo de Materiales , Ortopedia , Poliuretanos/síntesis química , Poliuretanos/química , Poliuretanos/metabolismo , Ovinos , Propiedades de SuperficieRESUMEN
Biodegradable polyurethanes are typically prepared from polyester polyols, aliphatic diisocyanates and chain extenders. We have developed a degradable chain extender (DCE) based on dl-lactic acid and ethylene glycol to accelerate hard segment degradation. Three series of polyurethane elastomers were synthesised to investigate the effect of incorporating DCE on synthesis, mechanical and thermal properties and in-vitro degradation. Polyurethane soft segments were based on poly(epsilon-caprolactone) (PCL) polyol. The hard segment was based on either ethyl lysine diisocyanate or hexamethylene diisocyanate in combination with ethylene glycol or DCE. Polyurethanes were characterised by gel permeation chromatography, tensile testing (Instron) and differential scanning calorimetry. Polymer degradation in-vitro (phosphate buffered saline) was tested by measuring mass loss, change in molecular weight and amine concentration in degradation products at three different time points over a 1 year period. Incorporation of DCE did not affect thermal or mechanical properties but had an influence on the in-vitro degradation. All polyurethanes exhibited considerable molecular weight decrease over the test period, and DCE-based polyurethanes showed the highest mass loss. The presence of the DCE and the initial molecular weight of the polyurethane are the key factors responsible for high mass losses. Differential scanning calorimetry, amine group analysis and the observation that mass loss was directly proportional to hard segment weight percentage, strongly supported that the polyurethane hard segment is the most susceptible segment to degradation in these polyurethanes. The PCL-based soft segment appears to undergo little or no degradation under these test conditions.
Asunto(s)
Materiales Biocompatibles/química , Poliuretanos/química , Alcoholes/química , Alcaloides , Aminas/química , Materiales Biocompatibles/síntesis química , Rastreo Diferencial de Calorimetría , Ácidos Carboxílicos/química , Reactivos de Enlaces Cruzados/química , Hidrólisis , Isoquinolinas , Peso Molecular , Poliuretanos/síntesis química , Temperatura , Uretano/química , Agua/químicaRESUMEN
The long-term biostability of a novel thermoplastic polyurethane elastomer (Elast-Eon 2 80A) synthesized using poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS) macrodiols has been studied using an in vivo ovine model. The material's biostability was compared with that of three commercially available control materials, Pellethane 2363-80A, Pellethane 2363-55D and Bionate 55D, after subcutaneous implantation of strained compression moulded flat sheet dumbbells in sheep for periods ranging from 3 to 24 months. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to assess changes in the surface chemical structure and morphology of the materials. Gel permeation chromatography, differential scanning calorimetry and tensile testing were used to examine changes in bulk characteristics of the materials. The results showed that the biostability of the soft flexible PDMS-based test polyurethane was significantly better than the control material of similar softness, Pellethane 80A, and as good as or better than both of the harder commercially available negative control polyurethanes, Pellethane 55D and Bionate 55D. Changes observed in the surface of the Pellethane materials were consistent with oxidation of the aliphatic polyether soft segment and hydrolysis of the urethane bonds joining hard to soft segment with degradation in Pellethane 80A significantly more severe than that observed in Pellethane 55D. Very minor changes were seen on the surfaces of the Elast-Eon 2 80A and Bionate 55D materials. There was a general trend of molecular weight decreasing with time across all polymers and the molecular weights of all materials decreased at a similar relative rate. The polydispersity ratio, Mw/Mn, increased with time for all materials. Tensile tests indicated that UTS increased in Elast-Eon 2 80A and Bionate 55D following implantation under strained conditions. However, ultimate strain decreased and elastic modulus increased in the explanted specimens of all three materials when compared with their unimplanted unstrained counterparts. The results indicate that a soft, flexible PDMS-based polyurethane synthesized using 20% PHMO and 80% PDMS macrodiols has excellent long-term biostability compared with commercially available polyurethanes.