Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
ChemSusChem ; : e202301799, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285804

RESUMEN

Current electric storage systems eagerly focus on high-power and energy-dense Lithium-ion batteries to cope with increasing energy storage demands. Since cathode materials are one of the bottlenecks of these batteries, there is much interest in layered lithium-rich manganese oxide-based (LLMO) cathodes which can develop this technology. However, Initial Coulombic Efficiency (ICE) loss, poor rate performance and cycling instability issues are still persistent as problems to be solved for these materials. Recent research shows that water-soluble binders are effective in improving the performance of LLMO materials. Herein, we describe the synthesis, characterisation, and application of a series of water-soluble composites as a binder for LLMO cathodes. The PPy is introduced as part of the binder to improve the electronic conductivity and two different oxidants and various PPy to PSAP ratios were used to optimise the final properties. The electrochemical performance and morphology of the cathodes before and after cycling were investigated and compared with the conventional PVDF binder. The LLMO-2c electrode showed excellent charge-discharge performance, especially at 5 C and 10 C rates, and high cycling stability at 0.2 C whilst maintaining a final capacity of 184 mAh/g after 200 cycles, which is equal to 89.3 % capacity retention.

2.
J Alzheimers Dis ; 96(1): 47-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742653

RESUMEN

Alzheimer's disease (AD) and other forms of dementia are together a leading cause of disability and death in the aging global population, imposing a high personal, societal, and economic burden. They are also among the most prominent examples of failed drug developments. Indeed, after more than 40 AD trials of anti-amyloid interventions, reduction of amyloid-ß (Aß) has never translated into clinically relevant benefits, and in several cases yielded harm. The fundamental problem is the century-old, brain-centric phenotype-based definitions of diseases that ignore causal mechanisms and comorbidities. In this hypothesis article, we discuss how such current outdated nosology of dementia is a key roadblock to precision medicine and articulate how Network Medicine enables the substitution of clinicopathologic phenotypes with molecular endotypes and propose a new framework to achieve precision and curative medicine for patients with neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Envejecimiento/patología , Encéfalo/patología , Amiloide
3.
Drug Discov Today ; 28(3): 103486, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36623795

RESUMEN

Autism spectrum disorder (ASD) is a heterogenous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. Currently, ASD is diagnosed according to behavior-based criteria that overlook clinical and genomic heterogeneity, thus repeatedly resulting in failed clinical trials. Here, we summarize the scientific evidence pointing to the pressing need to create a precision medicine framework for ASD and other NDDs. We discuss the role of omics and systems biology to characterize more homogeneous disease subtypes with different underlying pathophysiological mechanisms and to determine corresponding tailored treatments. Finally, we provide recent initiatives towards tackling the complexity in NDDs for precision medicine and cost-effective drug discovery.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/terapia , Medicina de Precisión , Genómica , Genoma
4.
Materials (Basel) ; 15(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407729

RESUMEN

Self-healing is the capability of materials to repair themselves after the damage has occurred, usually through the interaction between molecules or chains. Physical and chemical processes are applied for the preparation of self-healing systems. There are different approaches for these systems, such as heterogeneous systems, shape memory effects, hydrogen bonding or covalent-bond interaction, diffusion, and flow dynamics. Self-healing mechanisms can occur in particular through heat and light exposure or through reconnection without a direct effect. The applications of these systems display an increasing trend in both the R&D and industry sectors. Moreover, self-healing systems and their energy storage applications are currently gaining great importance. This review aims to provide general information on recent developments in self-healing materials and their battery applications given the critical importance of self-healing systems for lithium-ion batteries (LIBs). In the first part of the review, an introduction about self-healing mechanisms and design strategies for self-healing materials is given. Then, selected important healing materials in the literature for the anodes of LIBs are mentioned in the second part. The results and future perspectives are stated in the conclusion section.

5.
6.
Front Psychiatry ; 12: 722378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658958

RESUMEN

Fragile X syndrome (FXS) is the most frequent monogenic cause of autism or intellectual disability, and research on its pathogenetic mechanisms has provided important insights on this neurodevelopmental condition. Nevertheless, after 30 years of intense research, efforts to develop treatments have been mostly unsuccessful. The aim of this review is to compile evidence from existing research pointing to clinical, genetic, and therapeutic response heterogeneity in FXS and highlight the need of implementing precision medicine-based treatments. We comment on the high genetic and phenotypic heterogeneity present in FXS, as a contributing factor to the difficulties found during drug development. Given that several clinical trials have showed a non-negligeable fraction of positive responders to drugs targeting core FXS symptoms, we propose that success of clinical trials can be achieved by tackling the underlying heterogeneity in FXS by accurately stratifying patients into drug-responder subpopulations. These precision medicine-based approaches, which can be first applied to well-defined monogenic diseases such as FXS, can also serve to define drug responder profiles based on specific biomarkers or phenotypic features that can associate patients with different genetic backgrounds to a same candidate drug, thus repositioning a same drug for a larger number of patients with NDDs.

7.
Arch Toxicol ; 95(12): 3745-3775, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626214

RESUMEN

Mechanism-based risk assessment is urged to advance and fully permeate into current safety assessment practices, possibly at early phases of drug safety testing. Toxicogenomics is a promising source of mechanisms-revealing data, but interpretative analysis tools specific for the testing systems (e.g. hepatocytes) are lacking. In this study, we present the TXG-MAPr webtool (available at https://txg-mapr.eu/WGCNA_PHH/TGGATEs_PHH/ ), an R-Shiny-based implementation of weighted gene co-expression network analysis (WGCNA) obtained from the Primary Human Hepatocytes (PHH) TG-GATEs dataset. The 398 gene co-expression networks (modules) were annotated with functional information (pathway enrichment, transcription factor) to reveal their mechanistic interpretation. Several well-known stress response pathways were captured in the modules, were perturbed by specific stressors and showed preservation in rat systems (rat primary hepatocytes and rat in vivo liver), with the exception of DNA damage and oxidative stress responses. A subset of 87 well-annotated and preserved modules was used to evaluate mechanisms of toxicity of endoplasmic reticulum (ER) stress and oxidative stress inducers, including cyclosporine A, tunicamycin and acetaminophen. In addition, module responses can be calculated from external datasets obtained with different hepatocyte cells and platforms, including targeted RNA-seq data, therefore, imputing biological responses from a limited gene set. As another application, donors' sensitivity towards tunicamycin was investigated with the TXG-MAPr, identifying higher basal level of intrinsic immune response in donors with pre-existing liver pathology. In conclusion, we demonstrated that gene co-expression analysis coupled to an interactive visualization environment, the TXG-MAPr, is a promising approach to achieve mechanistic relevant, cross-species and cross-platform evaluation of toxicogenomic data.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Medición de Riesgo/métodos , Toxicogenética/métodos , Acetaminofén/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Ciclosporina/toxicidad , Conjuntos de Datos como Asunto , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/patología , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especificidad de la Especie , Tunicamicina/toxicidad
8.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800393

RESUMEN

eTRANSAFE is a research project funded within the Innovative Medicines Initiative (IMI), which aims at developing integrated databases and computational tools (the eTRANSAFE ToxHub) that support the translational safety assessment of new drugs by using legacy data provided by the pharmaceutical companies that participate in the project. The project objectives include the development of databases containing preclinical and clinical data, computational systems for translational analysis including tools for data query, analysis and visualization, as well as computational models to explain and predict drug safety events.

9.
Biol Direct ; 16(1): 5, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33435983

RESUMEN

BACKGROUND: Drug-induced liver injury (DILI) is an adverse reaction caused by the intake of drugs of common use that produces liver damage. The impact of DILI is estimated to affect around 20 in 100,000 inhabitants worldwide each year. Despite being one of the main causes of liver failure, the pathophysiology and mechanisms of DILI are poorly understood. In the present study, we developed an ensemble learning approach based on different features (CMap gene expression, chemical structures, drug targets) to predict drugs that might cause DILI and gain a better understanding of the mechanisms linked to the adverse reaction. RESULTS: We searched for gene signatures in CMap gene expression data by using two approaches: phenotype-gene associations data from DisGeNET, and a non-parametric test comparing gene expression of DILI-Concern and No-DILI-Concern drugs (as per DILIrank definitions). The average accuracy of the classifiers in both approaches was 69%. We used chemical structures as features, obtaining an accuracy of 65%. The combination of both types of features produced an accuracy around 63%, but improved the independent hold-out test up to 67%. The use of drug-target associations as feature obtained the best accuracy (70%) in the independent hold-out test. CONCLUSIONS: When using CMap gene expression data, searching for a specific gene signature among the landmark genes improves the quality of the classifiers, but it is still limited by the intrinsic noise of the dataset. When using chemical structures as a feature, the structural diversity of the known DILI-causing drugs hampers the prediction, which is a similar problem as for the use of gene expression information. The combination of both features did not improve the quality of the classifiers but increased the robustness as shown on independent hold-out tests. The use of drug-target associations as feature improved the prediction, specially the specificity, and the results were comparable to previous research studies.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Aprendizaje Automático , Preparaciones Farmacéuticas/química , Biología de Sistemas , Humanos , Modelos Biológicos
11.
J Mol Biol ; 433(11): 166656, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32976910

RESUMEN

Protein interactions play a crucial role among the different functions of a cell and are central to our understanding of cellular processes both in health and disease. Here we present Galaxy InteractoMIX (http://galaxy.interactomix.com), a platform composed of 13 different computational tools each addressing specific aspects of the study of protein-protein interactions, ranging from large-scale cross-species protein-wide interactomes to atomic resolution level of protein complexes. Galaxy InteractoMIX provides an intuitive interface where users can retrieve consolidated interactomics data distributed across several databases or uncover links between diseases and genes by analyzing the interactomes underlying these diseases. The platform makes possible large-scale prediction and curation protein interactions using the conservation of motifs, interology, or presence or absence of key sequence signatures. The range of structure-based tools includes modeling and analysis of protein complexes, delineation of interfaces and the modeling of peptides acting as inhibitors of protein-protein interactions. Galaxy InteractoMIX includes a range of ready-to-use workflows to run complex analyses requiring minimal intervention by users. The potential range of applications of the platform covers different aspects of life science, biomedicine, biotechnology and drug discovery where protein associations are studied.


Asunto(s)
Biología Computacional/métodos , Mapeo de Interacción de Proteínas , Programas Informáticos , Secuencias de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Interfaz Usuario-Computador , Flujo de Trabajo
12.
PLoS Biol ; 18(11): e3000885, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33170835

RESUMEN

Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5-but not NOX1, NOX2, or NOX4-with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed-upon aging-severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension.


Asunto(s)
Hipertensión/fisiopatología , NADPH Oxidasa 5/genética , Óxido Nítrico/metabolismo , Adulto , Factores de Edad , Anciano , Animales , Células Endoteliales , Endotelio Vascular , Femenino , Técnicas de Sustitución del Gen/métodos , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Persona de Mediana Edad , NADPH Oxidasa 5/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno
13.
NPJ Digit Med ; 3: 81, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529043

RESUMEN

Precision Medicine implies a deep understanding of inter-individual differences in health and disease that are due to genetic and environmental factors. To acquire such understanding there is a need for the implementation of different types of technologies based on artificial intelligence (AI) that enable the identification of biomedically relevant patterns, facilitating progress towards individually tailored preventative and therapeutic interventions. Despite the significant scientific advances achieved so far, most of the currently used biomedical AI technologies do not account for bias detection. Furthermore, the design of the majority of algorithms ignore the sex and gender dimension and its contribution to health and disease differences among individuals. Failure in accounting for these differences will generate sub-optimal results and produce mistakes as well as discriminatory outcomes. In this review we examine the current sex and gender gaps in a subset of biomedical technologies used in relation to Precision Medicine. In addition, we provide recommendations to optimize their utilization to improve the global health and disease landscape and decrease inequalities.

14.
Proc Natl Acad Sci U S A ; 116(14): 7129-7136, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894481

RESUMEN

Drug discovery faces an efficacy crisis to which ineffective mainly single-target and symptom-based rather than mechanistic approaches have contributed. We here explore a mechanism-based disease definition for network pharmacology. Beginning with a primary causal target, we extend this to a second using guilt-by-association analysis. We then validate our prediction and explore synergy using both cellular in vitro and mouse in vivo models. As a disease model we chose ischemic stroke, one of the highest unmet medical need indications in medicine, and reactive oxygen species forming NADPH oxidase type 4 (Nox4) as a primary causal therapeutic target. For network analysis, we use classical protein-protein interactions but also metabolite-dependent interactions. Based on this protein-metabolite network, we conduct a gene ontology-based semantic similarity ranking to find suitable synergistic cotargets for network pharmacology. We identify the nitric oxide synthase (Nos1 to 3) gene family as the closest target to Nox4 Indeed, when combining a NOS and a NOX inhibitor at subthreshold concentrations, we observe pharmacological synergy as evidenced by reduced cell death, reduced infarct size, stabilized blood-brain barrier, reduced reoxygenation-induced leakage, and preserved neuromotor function, all in a supraadditive manner. Thus, protein-metabolite network analysis, for example guilt by association, can predict and pair synergistic mechanistic disease targets for systems medicine-driven network pharmacology. Such approaches may in the future reduce the risk of failure in single-target and symptom-based drug discovery and therapy.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Descubrimiento de Drogas , NADPH Oxidasa 4/metabolismo , Óxido Nítrico Sintasa/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/prevención & control , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Masculino , Ratones , NADPH Oxidasa 4/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/efectos de los fármacos , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pirazoles/farmacología , Piridonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Accidente Cerebrovascular/prevención & control
15.
J Mol Biol ; 431(13): 2477-2484, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30851278

RESUMEN

The genetic basis of complex diseases involves alterations on multiple genes. Unraveling the interplay between these genetic factors is key to the discovery of new biomarkers and treatments. In 2014, we introduced GUILDify, a web server that searches for genes associated to diseases, finds novel disease genes applying various network-based prioritization algorithms and proposes candidate drugs. Here, we present GUILDify v2.0, a major update and improvement of the original method, where we have included protein interaction data for seven species and 22 human tissues and incorporated the disease-gene associations from DisGeNET. To infer potential disease relationships associated with multi-morbidities, we introduced a novel feature for estimating the genetic and functional overlap of two diseases using the top-ranking genes and the associated enrichment of biological functions and pathways (as defined by GO and Reactome). The analysis of this overlap helps to identify the mechanistic role of genes and protein-protein interactions in comorbidities. Finally, we provided an R package, guildifyR, to facilitate programmatic access to GUILDify v2.0 (http://sbi.upf.edu/guildify2).


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Comorbilidad , Diseño de Fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Humanos , Programas Informáticos
16.
Front Genet ; 9: 412, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319692

RESUMEN

Understanding the mechanisms underlying drug therapeutic action and toxicity is crucial for the prevention and management of drug adverse reactions, and paves the way for a more efficient and rational drug design. The characterization of drug targets, drug metabolism proteins, and proteins associated to side effects according to their expression patterns, their tolerance to genomic variation and their role in cellular networks, is a necessary step in this direction. In this contribution, we hypothesize that different classes of proteins involved in the therapeutic effect of drugs and in their adverse effects have distinctive transcriptomics, genomics and network features. We explored the properties of these proteins within global and organ-specific interactomes, using multi-scale network features, evaluated their gene expression profiles in different organs and tissues, and assessed their tolerance to loss-of-function variants leveraging data from 60K subjects. We found that drug targets that mediate side effects are more central in cellular networks, more intolerant to loss-of-function variation, and show a wider breadth of tissue expression than targets not mediating side effects. In contrast, drug metabolizing enzymes and transporters are less central in the interactome, more tolerant to deleterious variants, and are more constrained in their tissue expression pattern. Our findings highlight distinctive features of proteins related to drug action, which could be applied to prioritize drugs with fewer probabilities of causing side effects.

17.
Pharmaceuticals (Basel) ; 11(3)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932108

RESUMEN

The past decades have witnessed a paradigm shift from the traditional drug discovery shaped around the idea of “one target, one disease” to polypharmacology (multiple targets, one disease). Given the lack of clear-cut boundaries across disease (endo)phenotypes and genetic heterogeneity across patients, a natural extension to the current polypharmacology paradigm is to target common biological pathways involved in diseases via endopharmacology (multiple targets, multiple diseases). In this study, we present proximal pathway enrichment analysis (PxEA) for pinpointing drugs that target common disease pathways towards network endopharmacology. PxEA uses the topology information of the network of interactions between disease genes, pathway genes, drug targets and other proteins to rank drugs by their interactome-based proximity to pathways shared across multiple diseases, providing unprecedented drug repurposing opportunities. Using PxEA, we show that many drugs indicated for autoimmune disorders are not necessarily specific to the condition of interest, but rather target the common biological pathways across these diseases. Finally, we provide high scoring drug repurposing candidates that can target common mechanisms involved in type 2 diabetes and Alzheimer’s disease, two conditions that have recently gained attention due to the increased comorbidity among patients.

18.
Pharmacol Rev ; 70(2): 348-383, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507103

RESUMEN

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.


Asunto(s)
Enfermedad Crónica/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Análisis de Sistemas , Animales , Antiinflamatorios/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Humanos , Factor 2 Relacionado con NF-E2/genética
19.
NPJ Syst Biol Appl ; 4: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423274

RESUMEN

Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease-disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. Here, we investigate a high prevalence unmet medical need cluster of disease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase (sGC), has been targeted pharmacologically exclusively for smooth muscle modulation in cardiology and pulmonology. Here, we examine the disease associations of sGC in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Specifically, our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy.

20.
PLoS Comput Biol ; 14(1): e1005802, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346365

RESUMEN

Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.


Asunto(s)
Biología Computacional/educación , Internado y Residencia , Algoritmos , Australia , Curriculum , Países en Desarrollo , Europa (Continente) , Geografía , Humanos , Desarrollo de Programa , Estudiantes , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA