Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(3): eaay7243, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010773

RESUMEN

Microcirculatory obstruction is a hallmark of severe malaria, but mechanisms of parasite sequestration are only partially understood. Here, we developed a robust three-dimensional microvessel model that mimics the arteriole-capillary-venule (ACV) transition consisting of a narrow 5- to 10-µm-diameter capillary region flanked by arteriole- or venule-sized vessels. Using this platform, we investigated red blood cell (RBC) transit at the single cell and at physiological hematocrits. We showed normal RBCs deformed via in vivo-like stretching and tumbling with negligible interactions with the vessel wall. By comparison, Plasmodium falciparum-infected RBCs exhibited virtually no deformation and rapidly accumulated in the capillary-sized region. Comparison of wild-type parasites to those lacking either cytoadhesion ligands or membrane-stiffening knobs showed highly distinctive spatial and temporal kinetics of accumulation, linked to velocity transition in ACVs. Our findings shed light on mechanisms of microcirculatory obstruction in malaria and establish a new platform to study hematologic and microvascular diseases.


Asunto(s)
Fenómenos Biofísicos , Eritrocitos/parasitología , Malaria/parasitología , Plasmodium falciparum/fisiología , Ingeniería de Tejidos , Capilares , Adhesión Celular , Movimiento Celular , Colágeno/metabolismo , Hematócrito , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos , Luz , Perfusión
2.
mBio ; 10(3)2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138740

RESUMEN

Cerebral malaria is a severe neurological complication associated with sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the brain microvasculature, but the specific binding interactions remain under debate. Here, we have generated an engineered three-dimensional (3D) human brain endothelial microvessel model and studied P. falciparum binding under the large range of physiological flow velocities that occur in both health and disease. Perfusion assays on 3D microvessels reveal previously unappreciated phenotypic heterogeneity in parasite binding to tumor necrosis factor alpha (TNF-α)-activated brain endothelial cells. While clonal parasite lines expressing a group B P. falciparum erythrocyte membrane protein 1 (PfEMP1) present an increase in binding to activated 3D microvessels, P. falciparum-IE expressing DC8-PfEMP1 present a decrease in binding. The differential response to endothelium activation is mediated by surface expression changes of endothelial protein C receptor (EPCR) and intercellular adhesion molecule 1 (ICAM-1). These findings demonstrate heterogeneity in parasite binding and provide evidence for a parasite strategy to adapt to a changing microvascular environment during infection. The engineered 3D human brain microvessel model provides new mechanistic insight into parasite binding and opens opportunities for further studies on malaria pathogenesis and parasite-vessel interactions.IMPORTANCE Cerebral malaria research has been hindered by the inaccessibility of the brain. Here, we have developed an engineered 3D human brain microvessel model that mimics the blood flow rates and architecture of small blood vessels to study how P. falciparum-infected human erythrocytes attach to brain endothelial cells. By studying parasite lines with different adhesive properties, we show that the malaria parasite binding rate is heterogeneous and strongly influenced by physiological differences in flow and whether the endothelium has been previously activated by TNF-α, a proinflammatory cytokine that is linked to malaria disease severity. We also show the importance of human EPCR and ICAM-1 in parasite binding. Our model sheds new light on how P. falciparum binds within brain microvessels and provides a powerful method for future investigations of recruitment of human brain pathogens to the blood vessel lining of the brain.


Asunto(s)
Encéfalo/parasitología , Adhesión Celular , Receptor de Proteína C Endotelial/metabolismo , Eritrocitos/parasitología , Molécula 1 de Adhesión Intercelular/metabolismo , Microvasos/parasitología , Plasmodium falciparum/fisiología , Sitios de Unión , Encéfalo/citología , Técnicas de Cultivo de Célula , Células Cultivadas , Células Endoteliales/parasitología , Receptor de Proteína C Endotelial/genética , Eritrocitos/fisiología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Malaria Cerebral/parasitología , Malaria Cerebral/fisiopatología , Malaria Falciparum/parasitología , Microvasos/citología , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/metabolismo , Ingeniería de Tejidos/métodos , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...