RESUMEN
Mercury (Hg), a ubiquitous atmospheric trace metal posing serious health risks, originates from natural and anthropogenic sources. India, the world's second-largest Hg emitter and a signatory to the Minamata Convention, is committed to reducing these emissions. However, critical gaps exist in our understanding of the spatial and temporal distribution of Hg across the vast Indian subcontinent due to limited observational data. This study addresses this gap by employing the GEOS-Chem model with various emission inventories (UNEP2010, WHET, EDGAR, STREETS, and UNEP2015) to simulate Hg variability across the Asian domain, with a specific focus on India from 2013 to 2017. Model performance was evaluated using ground-based GMOS observations and available literature data. Emission inventory performance varied across different observational stations. Hence, we employed ensemble results from all inventories. The maximum relative bias for Total Gaseous Mercury (TGM) and Gaseous Elemental Mercury (GEM; Hg0) concentrations is about ±20%, indicating simulations with sufficient accuracy. Total Hg wet deposition fluxes are highest over the Western Ghats and the Himalayan foothills due to higher rainfall. During the monsoon, the Hg wet deposition flux is about 65.4% of the annual wet deposition flux. Moreover, westerly winds cause higher wet deposition in summer over Northern and Eastern India. Total Hg dry deposition flux accounts for 72-74% of total deposition over India. Hg0 dry deposition fluxes are higher over Eastern India, which correlates strongly with the leaf area index. Excluding Indian anthropogenic emissions from the model simulations resulted in a substantial decrease (21.9% and 33.5%) in wet and total Hg deposition fluxes, highlighting the dominant role of human activities in Hg pollution in India.
RESUMEN
Ammonia (NH3) acts as a key precursor of the particulate matter, could reduce visibility, deplete stratospheric ozone, and trigger perturbation in ecosystems. Being an agrarian country with a large livestock population and uncontrolled fertilizer application, India could be accountable as a major stakeholder of global NH3 emissions. This study developed a comprehensive gridded (0.1° x 0.1°) ammonia inventory for India considering 24 types of sources. The total NH3 emission is estimated to be 10.54 Tg/yr in 2022, where synthetic fertilizer application accounts for â¼47 % followed by livestock (â¼34 %). Minor unattended sectors such as biomass burning, agricultural soil, human excrement, waste disposal, etc. contribute 0.68 Tg/yr, 0.32 Tg/yr, 0.3 Tg/yr, and 0.14 Tg/yr, respectively. The overall uncertainty of the inventory ranges around ± 55 %. These emission datasets are essential for atmospheric chemistry models and could be a crucial tool for policymakers to combat ammonia pollution.
RESUMEN
Understanding the complex interactions between atmospheric aerosols and water vapor in subsaturated regions of the atmosphere is crucial for modeling and predicting aerosol-cloud-radiation-climate interactions. However, the microphysical mechanisms of these interactions for ambient aerosols remain poorly understood. For this study, size-resolved samples were collected from a high-altitude, relatively clean site situated in the Western Ghats of India during the monsoon season, in order to study background and preindustrial processes as a baseline for climate functioning within the context of the most polluted region of the world. Measurements of humidity-dependent mass-based growth factors, hygroscopicity, deliquescence behavior, and aerosol liquid water content (ALWC) were made by a novel approach using a quartz crystal microbalance based on a piezo-electric sensor. The climate-relevant fine-mode aerosols (≤2.5 µm) exhibited strong size-dependent variations in their interactions with water vapor and contributed a high fraction of ALWC. Deliquescence occurred for relatively large aerosols (diameter >180 nm) but was absent for smaller aerosols. The deliquescence relative humidity for ambient aerosols was significantly lower than that of pure inorganic salts, suggesting a strong influence of organic species. Our study establishes an improved approach for accurately measuring aerosol water uptake characteristics of ambient aerosols in the subsaturated regime, aiding in the assessment of radiative forcing effects and improving climate models.
RESUMEN
Microplastics (MPs) in the atmosphere can undergo long-range transport from emission regions to pristine terrestrial and oceanic ecosystems. Due to their inherent toxic and hazardous characteristics, MPs pose serious risks to both human well-being and the equilibrium of ecosystem. The present study outlines the comprehensive characterization, spanning physical and chemical attributes of MPs associated with atmospheric aerosols. Total suspended particulates (TSPs) were collected on a quartz fibre filter by operating a high-volume sampler for 24 h during distinct years (March, 2016 and November, 2020) at a coastal location in the northeast Arabian Sea. Subsequent to the sampling, a series of techniques were applied including density separation. The assessment and scrutiny of the MPs was carried out using stereo-zoom microscopy with supplementary validation using advanced fluorescence microscopy for enhanced precision in identification. Our comparative assessment suggests peroxide treatment followed by density separation could be a robust procedure for the definitive identification and characterization of MPs in the atmosphere. Average total abundance of MPs was found to be 1.30 ± 0.14 n/m3 in 2016 and 1.46 ± 0.12 n/m3 in 2020 with fibres, fragments and films having similar relative contributions (41 %, 31 %, 28 % in 2016 and 40 %, 35 %, 25 % in 2020). Fibres were found to be dominant morphotype followed by fragments and films over the coastal region of the Arabian Sea. In order to unravel the detailed chemical nature of these MPs, spectral analysis using µ-FTIR was carried out. The outcome of the analysis showed prevailing polymers as polyvinyl chloride and polymethyl methacrylate (50545 %) as dominant polymers followed by polyester (15 %), styrene butyl methacrylate (11 %), and polyacetal (9 %). MPs present in the vicinity of the Arabian Sea have potential to supply nutrients and toxicants, consequently can contribute to the modulation of the surface water biogeochemical processes.
RESUMEN
The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg â κorg + ϵinorg â κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.
RESUMEN
Black carbon (BC) aerosols critically impact the climate and hydrological cycle. The impact of anthropogenic emissions and coastal meteorology on BC dynamics, however, remains unclear over tropical India, a globally identified hotspot. In this regard, we have performed in situ measurements of BC over a megacity (Chennai, 12° 59' 26.5â³ N, 80° 13' 51.8â³ E) on the eastern coast of India during January-June 2020, comprising the period of COVID-19-induced strict lockdown. Our measurements revealed an unprecedented reduction in BC concentration by an order of magnitude as reported by other studies for various other pollutants. This was despite having stronger precipitation during pre-lockdown and lesser precipitation washout during the lockdown. Our analyses, taking mesoscale dynamics into account, unravels stronger BC depletion in the continental air than marine air. Additionally, the BC source regime also shifted from a fossil-fuel dominance to a biomass burning dominance as a result of lockdown, indicating relative reduction in fossil fuel combustion. Considering the rarity of such a low concentration of BC in a tropical megacity environment, our observations and findings under near-natural or background levels of BC may be invaluable to validate model simulations dealing with BC dynamics and its climatic impacts in the Anthropocene.
Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Meteorología , India , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Combustibles Fósiles/análisis , Carbono/análisis , Monitoreo del AmbienteRESUMEN
Purpose of Review: Fine particulate matter (PM2.5) and ground-level ozone (O3) pose a significant risk to human health. The World Health Organization (WHO) has recently revised healthy thresholds for both pollutants. The formation and evolution of PM2.5 and O3 are however governed by complex physical and multiphase chemical processes, and therefore, it is extremely challenging to mitigate both pollutants simultaneously. Here, we review mechanisms and discuss the science-informed pathways for effective and simultaneous mitigation of PM2.5 and O3. Recent Findings: Global warming has led to a general increase in biogenic emissions, which can enhance the formation of O3 and secondary organic aerosols. Reductions in anthropogenic emissions during the COVID-19 lockdown reduced PM2.5; however, O3 was enhanced in several polluted regions. This was attributed to more intense sunlight due to low aerosol loading and non-linear response of O3 to NO x . Such contrasting physical and chemical interactions hinder the formulation of a clear roadmap for clean air over such regions. Summary: Atmospheric chemistry including the role of biogenic emissions, aerosol-radiation interactions, boundary layer, and regional-scale transport are the key aspects that need to be carefully considered in the formulation of mitigation pathways. Therefore, a thorough understanding of the chemical effects of the emission reductions, changes in photolytic rates and boundary layer due to perturbation of solar radiation, and the effect of meteorological/seasonal changes are needed on a regional basis. Statistical emulators and machine learning approaches can aid the cumbersome process of multi-sector multi-species source attribution.
RESUMEN
The interaction between water vapor and atmospheric aerosol leads to enhancement in aerosol water content, which facilitates haze development, but its concentrations, sources, and impacts remain largely unknown in polluted urban environments. Here, we show that the Indian capital, Delhi, which tops the list of polluted capital cities, also experiences the highest aerosol water yet reported worldwide. This high aerosol water promotes secondary formation of aerosols and worsens air pollution. We report that severe pollution events are commonly associated with high aerosol water which enhances light scattering and reduces visibility by 70%. Strong light scattering also suppresses the boundary layer height on winter mornings in Delhi, inhibiting dispersal of pollutants and further exacerbating morning pollution peaks. We provide evidence that ammonium chloride is the largest contributor to aerosol water in Delhi, making up 40% on average, and we highlight that regulation of chlorine-containing precursors should be considered in mitigation strategies.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Cloruro de Amonio , China , Monitoreo del Ambiente , India , Material Particulado/análisis , Estaciones del AñoRESUMEN
Gaseous and particulate chlorine species play an important role in modulating tropospheric oxidation capacity, aerosol water uptake, visibility degradation, and human health. The lack of recent global continental chlorine emissions has hindered modeling studies of the role of chlorine in the atmosphere. Here, we develop a comprehensive global emission inventory of gaseous HCl and particulate Cl- (pCl), including 35 sources categorized in six source sectors based on published up-to-date activity data and emission factors. These emissions are gridded at a spatial resolution of 0.1° × 0.1° for the years 1960 to 2014. The estimated emissions of HCl and pCl in 2014 are 2354 (1661-3201) and 2321 (930-3264) Gg Cl a-1, respectively. Emissions of HCl are mostly from open waste burning (38%), open biomass burning (19%), energy (19%), and residential (13%) sectors, and the major sources classified by fuel type are combustion of waste (43%), biomass (32%), and coal (25%). Emissions of pCl are mostly from biofuel (29%) and open biomass burning processes (44%). The sectoral and spatial distributions of HCl and pCl emissions are very heterogeneous along the study period, and the temporal trends are mainly driven by the changes in emission factors, energy intensity, economy, and population.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Cloruros , Carbón Mineral , Monitoreo del Ambiente , Humanos , Ácido Clorhídrico , Material Particulado/análisisRESUMEN
The novel coronavirus, since its first outbreak in December, has, up till now, affected approximately 114,542 people across 115 countries. Many international agencies are devoting efforts to enhance the understanding of the evolving COVID-19 outbreak on an international level, its influences, and preparedness. At present, COVID-19 appears to affect individuals through person-to-person means, like other commonly found cold or influenza viruses. It is widely known and acknowledged that viruses causing influenza peak during cold temperatures and gradually subside in the warmer temperature, owing to their seasonality. Thus, COVID-19, due to its regular flu-like symptoms, is also expected to show similar seasonality and subside as the global temperatures rise in the northern hemisphere with the onset of spring. Despite these speculations, however, the systematic analysis in the global perspective of the relation between COVID-19 spread and meteorological parameters is unavailable. Here, by analyzing the region- and city-specific affected global data and corresponding meteorological parameters, we show that there is an optimum range of temperature and UV index strongly affecting the spread and survival of the virus, whereas precipitation, relative humidity, cloud cover, etc. have no effect on the virus. Unavailability of pharmaceutical interventions would require greater preparedness and alert for the effective control of COVID-19. Under these conditions, the information provided here could be very helpful for the global community struggling to fight this global crisis. It is, however, important to note that the information presented here clearly lacks any physiological evidences, which may merit further investigation. Thus, any attempt for management, implementation, and evaluation strategies responding to the crisis arising due to the COVID-19 outbreak must not consider the evaluation presented here as the foremost factor.
RESUMEN
Machine learning (ML) has emerged as a powerful technique in the Earth system science, nevertheless, its potential to model complex atmospheric chemistry remains largely unexplored. Here, we applied ML to simulate the variability in urban ozone (O3) over Doon valley of the Himalaya. The ML model, trained with past variations in O3 and meteorological conditions, successfully reproduced the independent O3 data (r2 ~ 0.7). Model performance is found to be similar when the variation in major precursors (CO and NOx) were included in the model, instead of the meteorology. Further the inclusion of both precursors and meteorology improved the performance significantly (r2 = 0.86) and the model could also capture the outliers, which are crucial for air quality assessments. We suggest that in absence of high-resolution measurements, ML modeling has profound implications for unraveling the feedback between pollution and meteorology in the fragile Himalayan ecosystem.
RESUMEN
Ambient PM10 (particulate matter with aerodynamic diameter ≤ 10 µm) samples were collected and characterized from July 2012 to August 2013 with the objective to evaluate the variation in elemental concentration and use the same as markers for source apportionment and health risk assessment for the first time over Bhubaneswar, India. The yearly average mass of PM10 was 82.28 µg/m3, which was ~ 37% higher than the national ambient air quality (NAAQ) standards. Maximum PM10 concentration was observed during winter season followed by post-monsoon, pre-monsoon, and monsoon months. Acid soluble components in the PM10 samples were analyzed using ICP-OES (inductive coupled plasma optical emission spectroscopy), and 19 different elements including heavy metals were determined. Enrichment factor analysis attributed the source to either crustal or non-crustal origin. Principal component analysis (PCA) revealed that crustal sources, industrial activities, and vehicular emissions were significant contributors to PM mass. The contribution of total average elemental concentration showed a seasonal variation with the lowest (11.96 µg/m3) and highest (17.77 µg/m3) during monsoon and winter, respectively, which is relatively less significant than the variation in total PM10 mass that ranged between 48.43 µg/m3 in monsoon and 138.24 µg/m3 during the winter season. This observation evidences the predominant contribution of local/regional emission sources to the metallic components in coarse PM10 mass, which is corroborated by the wind pattern studies carried out using polar plots and a Lagrangian Particle Dispersion Model (LPDM) FLEXPART. Further, carcinogenic and non-carcinogenic health risk assessments of the measured elements that find their way into the human body through different exposure pathways have been calculated using United State Environmental Protection Agency (USEPA) standards. The carcinogenic risk of most of the elements was insignificant. The potential risk assessment study revealed that regular exposure to heavy metals through the ingestion pathway caused detrimental health effects. These effects were observed to be more severe in children in comparison to adults.
Asunto(s)
Contaminantes Atmosféricos , Adulto , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Niño , Monitoreo del Ambiente , Humanos , India , Tamaño de la Partícula , Material Particulado/análisis , Medición de Riesgo , Estaciones del AñoRESUMEN
Dental caries is the most prevalent oral disease affecting nearly 70% of children in India and elsewhere. Micro-ecological niche based acidification due to dysbiosis in oral microbiome are crucial for caries onset and progression. Here we report the tooth bacteriome diversity compared in Indian children with caries free (CF), severe early childhood caries (SC) and recurrent caries (RC). High quality V3-V4 amplicon sequencing revealed that SC exhibited high bacterial diversity with unique combination and interrelationship. Gracillibacteria_GN02 and TM7 were unique in CF and SC respectively, while Bacteroidetes, Fusobacteria were significantly high in RC. Interestingly, we found Streptococcus oralis subsp. tigurinus clade 071 in all groups with significant abundance in SC and RC. Positive correlation between low and high abundant bacteria as well as with TCS, PTS and ABC transporters were seen from co-occurrence network analysis. This could lead to persistence of SC niche resulting in RC. Comparative in vitro assessment of biofilm formation showed that the standard culture of S. oralis and its phylogenetically similar clinical isolates showed profound biofilm formation and augmented the growth and enhanced biofilm formation in S. mutans in both dual and multispecies cultures.
Asunto(s)
Fusobacterias/genética , Streptococcus mutans/genética , Biopelículas , Fusobacterias/clasificación , Humanos , Filogenia , Streptococcus mutans/clasificación , Streptococcus oralis/clasificación , Streptococcus oralis/genéticaRESUMEN
Coronaviruses are single stranded RNA viruses usually present in bats (reservoir hosts), and are generally lethal, highly transmissible, and pathogenic viruses causing sever morbidity and mortality rates in human. Several animals including civets, camels, etc. have been identified as intermediate hosts enabling effective recombination of these viruses to emerge as new virulent and pathogenic strains. Among the seven known human coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV) have evolved as severe pathogenic forms infecting the human respiratory tract. About 8096 cases and 774 deaths were reported worldwide with the SARS-CoV infection during year 2002; 2229 cases and 791 deaths were reported for the MERS-CoV that emerged during 2012. Recently ~ 33,849,737 cases and 1,012,742 deaths (data as on 30 Sep 2020) were reported from the recent evolver SARS-CoV-2 infection. Studies on epidemiology and pathogenicity have shown that the viral spread was potentially caused by the contact route especially through the droplets, aerosols, and contaminated fomites. Genomic studies have confirmed the role of the viral spike protein in virulence and pathogenicity. They target the respiratory tract of the human causing severe progressive pneumonia affecting other organs like central nervous system in case of SARS-CoV, severe renal failure in MERS-CoV, and multi-organ failure in SARS-CoV-2. Herein, with respect to current awareness and role of coronaviruses in global public health, we review the various factors involving the origin, evolution, and transmission including the genetic variations observed, epidemiology, and pathogenicity of the three potential coronaviruses variants SARS-CoV, MERS-CoV, and 2019-nCoV.
RESUMEN
The recent pandemic caused by the 2019 outbreak of novel coronavirus (2019-nCoV or COVID-19) has affected more than 3.0 million people resulting ~ 212,000 deaths across 215 countries/territories as on 28th April 2020. The importation of the cases owing to enormous international travels from the affected countries is the foremost reason for local cycle of transmission. For a country like India, the second most populous country in the world with ~ 1.35 billion population, the management and control of 2019-nCoV domestic spread heavily relied on effective screening and strict quarantine of passengers arriving at various international airports in India from affected countries. Here, by extracting the data from FLIRT, an online airline database for more than 800 airlines, and scanning more than 180,000 flights and 39.9 million corresponding passenger seats during 4th - 25th March, we show that India experienced the highest risk index of importing the passengers from middle eastern airports. Contrary to perception, travelers from China imposed lowest risk of importing the infected cases in India. This is clearly evident form the fact that while the number of infected cases were on the peak in China India was one of the least affected countries. The number of cases in India started exhibiting a sharp increase in the infected cases only after the European countries and USA recorded large number of infected cases. We further argue that while the number of cases in middle eastern countries may still be very low, the airports in middle eastern countries, particularly Dubai, being one of the largest transit hubs for international passengers, including arriving in India, might have posed a higher risk of getting infected with 2019-nCoV. We suggest that any future travel related disease infection screening at the airports should critically assess the passengers from major transit hubs in addition to affected country of origin.
Asunto(s)
Enfermedades Transmisibles Importadas , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades/prevención & control , Pandemias , Neumonía Viral/transmisión , Medición de Riesgo/métodos , Viaje , Aeronaves , Aeropuertos , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Humanos , India/epidemiología , Tamizaje Masivo/métodos , Neumonía Viral/epidemiología , Cuarentena , Enfermedad Relacionada con los ViajesRESUMEN
Fine particulate matter (PM2.5, aerodynamic diameter ≤2.5 µm) impacts the climate, reduces visibility and severely influences human health. The Indo-Gangetic Plain (IGP), home to about one-seventh of the world's total population and a hotspot of aerosol loading, observes strong enhancements in the PM2.5 concentrations towards winter. We performed high-resolution (12 km × 12 km) atmospheric chemical transport modeling (WRF-Chem) for the post-monsoon to winter transition to unravel the underlying dynamics and influences of regional emissions over the region. Model, capturing the observed variations to an extent, reveals that the spatial distribution of PM2.5 having patches of enhanced concentrations (≥100 µgm-3) during post-monsoon, evolves dramatically into a widespread enhancement across the IGP region during winter. A sensitivity simulation, supported by satellite observations of fires, shows that biomass-burning emissions over the northwest IGP play a crucial role during post-monsoon. Whereas, in contrast, towards winter, a large-scale decline in the air temperature, significantly shallower atmospheric boundary layer, and weaker winds lead to stagnant conditions (ventilation coefficient lower by a factor of ~4) thereby confining the anthropogenic influences closer to the surface. Such changes in the controlling processes from post-monsoon to winter transition profoundly affect the composition of the fine aerosols over the IGP region. The study highlights the need to critically consider the distinct meteorological processes of west-to-east IGP and changes in dominant sources from post-monsoon to winter in the formulation of future pollution mitigation policies.
RESUMEN
Atmospheric bioaerosols, which contain a diverse group of various biological materials, also include pathogenic microorganisms such as viruses, bacteria, and fungal spores. The dispersal of various pathogens negatively impacts the human and ecosystem health. While the impact of pathogenic bacteria and viruses on human and ecosystem health is well documented, the impact of fungal spores on crop, however, is poorly characterized. An unprecedented increase in number of fungal and fungal-like diseases (emerging fungal diseases (EFDs)) in plants is threatening the food security and endangering the biodiversity. In present communication, we show an increasing trend in the fungal bioaerosol attacks on crops over India outstripping bacteria and viruses. We further argue about the complex interactions between the fungal species, and crop impact over India is unique and highly interconnected with the topography, meteorological variables, and season of the year. Under constantly warming scenario, the fungal attacks on plants are expected to rise and, in all likelihood, extend to the sensitive and fragile ecosystems like the Himalayan region and the Western Ghats. An increasing trend in EFDs calls for immediate coordinated efforts towards understanding the type and diversity of pathogenic fungal bioaerosols. There is, however, a lack over Indian region about biogeography of pathogenic fungi. The detailed biogeography would help in improving public and political awareness to formulate the effective policy decisions. Any further disregard and delay in recognizing the importance of EFDs to crop and sensitive ecosystems can have severe societal and ecological repercussions over Indian region.
Asunto(s)
Ecosistema , Micosis , Hongos , Humanos , India , Esporas FúngicasRESUMEN
Hygroscopic growth and cloud condensation nuclei activation are key processes for accurately modeling the climate impacts of organic particulate matter. Nevertheless, the microphysical mechanisms of these processes remain unresolved. Here we report complex thermodynamic behaviors, including humidity-dependent hygroscopicity, diameter-dependent cloud condensation nuclei activity, and liquid-liquid phase separation in the laboratory for biogenically derived secondary organic material representative of similar atmospheric organic particulate matter. These behaviors can be explained by the non-ideal mixing of water with hydrophobic and hydrophilic organic components. The non-ideality-driven liquid-liquid phase separation further enhances water uptake and induces lowered surface tension at high relative humidity, which result in a lower barrier to cloud condensation nuclei activation. By comparison, secondary organic material representing anthropogenic sources does not exhibit complex thermodynamic behavior. The combined results highlight the importance of detailed thermodynamic representations of the hygroscopicity and cloud condensation nuclei activity in models of the Earth's climate system.
RESUMEN
Quantitative estimations of fungal aerosols are important to understand their role in causing respiratory diseases to humans especially in the developing and highly populated countries. In this study we sampled and quantified the three most dominantly found allergenic airborne fungi, Aspergillus fumigatus, Cladosporium cladosporioides, and Alternaria alternata from ambient PM10 samples using the quantitative PCR (qPCR) technique in a southern tropical Indian region, for one full year. Highest concentrations of A. fumigatus and C. cladosporioides were observed during monsoon whereas A. alternata displayed an elevated concentration in winter. The meteorological parameters such as temperature, relative humidity, wind speed, and precipitation exhibited a substantial influence on the atmospheric concentrations of allergenic fungal aerosols. The morphological features of various allergenic fungal spores present in the PM10 were investigated and the spores were found to possess distinct structural features. In a maiden attempt over this region we correlate the ambient fungal concentrations with the epidemiological allergy occurrence to obtain firsthand and preliminary information about the causative fungal allergen to the inhabitants exposed to bioaerosols. Our findings may serve as an important reference to atmospheric scientists, aero-biologists, doctors, and general public.
Asunto(s)
Aerosoles , Microbiología del Aire , Alérgenos/análisis , Alternaria/aislamiento & purificación , Aspergillus fumigatus/aislamiento & purificación , Cladosporium/aislamiento & purificación , Estaciones del Año , Humanos , India , Reacción en Cadena en Tiempo Real de la Polimerasa , Clima TropicalRESUMEN
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.