Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Vet Sci ; 11(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787174

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is responsible for the persistent infectious illness known as bovine paratuberculosis, which is one of the most easily overlooked diseases in China amid a lack of epidemiological data. In this study, we evaluated the agreement of milk and blood antibody tests for paratuberculosis and showed an overall agreement of 92.0%, with a 95.0% negative coincidence rate and a 78.6% positive coincidence rate. The milk test was then used to examine the prevalence and incidence of dairy cows in Hubei Province, China. We found that, at the individual level, the highest lacto-prevalence reached up to 22.9%; the farm-level prevalence was as high as 92.3% (12/13) and 84.6% (11/13) in January and April 2018, respectively. The total incidence risk of all farms was 6% per three months. We also found that large-scale farms had a significantly lower prevalence and incidence than small-scale farms. Finally, the correlation between paratuberculosis and milk quality was evaluated, and we confirmed that MAP can significantly alter milk quality and raise somatic cell counts in the milk. This study provides valuable information for assessing the prevalence and incidence risk of paratuberculosis in China. It further provides an essential basis for calling for the prevention and control of paratuberculosis in China.

2.
Vet Sci ; 11(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38787170

RESUMEN

BCG vaccination is increasingly reconsidered in the effective prevention of bovine tuberculosis (bTB). However, the primary challenge in BCG vaccination for cattle is the lack of a technique for differentiating between infected and vaccinated animals (DIVA). This study aimed to establish a novel DIVA diagnostic test based on an interferon-gamma in vitro release assay (IGRA). The plasmid encoding three differential antigens (Rv3872, CFP-10, and ESAT-6) absent in BCG genes but present in virulent M. bovis was previously constructed. Thus, a recombinant protein called RCE (Rv3872, CFP-10, and ESAT-6) was expressed, and an RCE-based DIVA IGRA (RCE-IGRA) was established. The RCE concentration was optimized at 4 µg/mL by evaluating 97 cattle (74 of which were bTB-positive, and 23 were negative) using a commercial IGRA bTB diagnostic kit. Further, 84 cattle were tested in parallel with the RCE-IGRA and commercial PPD-based IGRA (PPD-IGRA), and the results showed a high correlation with a kappa value of 0.83. The study included BCG-vaccinated calves (n = 6), bTB-positive cattle (n = 6), and bTB-negative non-vaccinated calves (n = 6). After 3 months post-vaccination, PPD-IGRA generated positive results in both vaccinated and infected calves. However, RCE-IGRA developed positive results in infected calves but negative results in vaccinated calves. In conclusion, this DIVA method has broad prospects in differentiating BCG vaccination from natural infection to prevent bTB.

3.
Front Immunol ; 15: 1367253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646533

RESUMEN

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Asunto(s)
Herpesvirus Bovino 1 , Mycoplasma bovis , Vacunas Atenuadas , Vacunas Combinadas , Animales , Bovinos , Herpesvirus Bovino 1/inmunología , Vacunas Combinadas/inmunología , Vacunas Combinadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Mycoplasma bovis/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/efectos adversos , Citocinas/metabolismo , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Infecciones por Mycoplasma/prevención & control , Infecciones por Mycoplasma/veterinaria , Infecciones por Mycoplasma/inmunología , Vacunas Marcadoras/inmunología , Vacunas Marcadoras/administración & dosificación , Vacunación/veterinaria , Eficacia de las Vacunas , Inmunidad Humoral , Complejo Respiratorio Bovino/prevención & control , Complejo Respiratorio Bovino/inmunología , Complejo Respiratorio Bovino/virología
4.
Cells ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38607043

RESUMEN

Mycoplasmopsis bovis is a causative agent of crucial diseases in both dairy and beef cattle leading to substantial economic losses. However, limited control measures for M. bovis-related diseases exist due to a lack of understanding about the virulence factors of this pathogen, a common challenge in mycoplasma research. Consequently, this study aimed to characterize a novel nucleomodulin as a virulence-related factor of M. bovis. Employing bioinformatic tools, we initially predicted MbovP467 to be a secreted protein with a nuclear localization signal based on SignalP scores and the cNLS (Nuclear Localization Signal) Mapper, respectively. Subsequently, the MbovP467 gene was synthesized and cloned into a pEGFP plasmid with EGFP labeling to obtain a recombinant plasmid (rpEGFP-MbovP467) and then was also cloned in pET-30a with a consideration for an Escherichia coli codon bias and expressed and purified for the production of polyclonal antibodies against the recombinant MbovP467 protein. Confocal microscopy and a Western blotting assay confirmed the nuclear location of MbovP467 in bovine macrophages (BoMacs). RNA-seq data revealed 220 up-regulated and 20 down-regulated genes in the rpEGFP-MbovP467-treated BoMac group compared to the control group (pEGFP). A GO- and KEGG-enrichment analysis identified associations with inflammatory responses, G protein-coupled receptor signaling pathways, nuclear receptor activity, sequence-specific DNA binding, the regulation of cell proliferation, IL-8, apoptotic processes, cell growth and death, the TNF signaling pathway, the NF-κB signaling pathway, pathways in cancer, and protein families of signaling and cellular processes among the differentially expressed up-regulated mRNAs. Further experiments, investigating cell viability and the inflammatory response, demonstrated that MbovP467 reduces BoMac cell viability and induces the mRNA expression of IL-1ß, IL-6, IL-8, TNF-α, and apoptosis in BoMac cells. Further, MbovP467 increased the promoter activity of TNF-α. In conclusion, this study identified a new nucleomodulin, MbovP467, for M. bovis, which might have an important role in M. bovis pathogenesis.


Asunto(s)
Interleucina-8 , Factor de Necrosis Tumoral alfa , Animales , Bovinos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Señales de Localización Nuclear/metabolismo , Regulación de la Expresión Génica , FN-kappa B/metabolismo
5.
Microorganisms ; 12(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38674682

RESUMEN

Pigeon Newcastle disease (ND) is a serious infectious illness caused by the pigeon Newcastle disease virus (NDV) or Paramyxovirus type 1 (PPMV-1). Genotype VI NDV is a primary factor in ND among Columbiformes (such as pigeons and doves). In a recent study, eight pigeon NDV strains were discovered in various provinces in China. These viruses exhibited mesogenic characteristics based on their MDT and ICPI values. The complete genome sequences of these eight strains showed a 90.40% to 99.19% identity match with reference strains of genotype VI, and a 77.86% to 80.45% identity match with the genotype II vaccine strain. Additionally, analysis of the F gene sequence revealed that these NDV strains were closely associated with sub-genotypes VI.2.2.2, VI.2.1.1.2.1, and VI.2.1.1.2.2. The amino acid sequence at the cleavage site of the F protein indicated virulent characteristics, with the sequences 112KRQKRF117 and 112RRQKRF117 observed. Pigeons infected with these sub-genotype strains had a low survival rate of only 20% to 30%, along with lesions in multiple tissues, highlighting the strong spread and high pathogenicity of these pigeon NDV strains. Molecular epidemiology data from the GenBank database revealed that sub-genotype VI.2.1.1.2.2 strains have been prevalent since 2011. In summary, the findings demonstrate that the prevalence of genotype VI NDV is due to strains from diverse sub-genotypes, with the sub-genotype VI.2.1.1.2.2 strain emerging as the current epidemic strain, highlighting the significance of monitoring pigeon NDV in China.

6.
Viruses ; 16(3)2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38543767

RESUMEN

Bovine parainfluenza virus type 3 (BPIV-3) is one of the major pathogens of the bovine respiratory disease complex (BRDC). BPIV-3 surveillance in China has been quite limited. In this study, we used PCR to test 302 cattle in China, and found that the positive rate was 4.64% and the herd-level positive rate was 13.16%. Six BPIV-3C strains were isolated and confirmed by electron microscopy, and their titers were determined. Three were sequenced by next-generation sequencing (NGS). Phylogenetic analyses showed that all isolates were most closely related to strain NX49 from Ningxia; the genetic diversity of genotype C strains was lower than strains of genotypes A and B; the HN, P, and N genes were more suitable for genotyping and evolutionary analyses of BPIV-3. Protein variation analyses showed that all isolates had mutations at amino acid sites in the proteins HN, M, F, and L. Genetic recombination analyses provided evidence for homologous recombination of BPIV-3 of bovine origin. The virulence experiment indicated that strain Hubei-03 had the highest pathogenicity and could be used as a vaccine candidate. These findings apply an important basis for the precise control of BPIV-3 in China.


Asunto(s)
Virus de la Parainfluenza 3 Bovina , Virus de la Parainfluenza 3 Humana , Animales , Bovinos , Virulencia , Filogenia , Prevalencia , Virus de la Parainfluenza 3 Bovina/genética , China/epidemiología
7.
Animals (Basel) ; 14(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38473133

RESUMEN

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry; it is a globally prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens associated with BRD. Our previous study attempted to combine the two vaccines and conducted a preliminary investigation of their optimal antigenic ratios. Based on this premise, the research extended its investigation by administering varying vaccine doses in a rabbit model to identify the most effective immunization dosage. After immunization, all rabbits in other immunization dose groups had a normal rectal temperature without obvious clinical symptoms. Furthermore, assays performed on the samples collected from immunized rabbits indicated that there were increased humoral and cellular immunological reactions. Moreover, the histological analysis of the lungs showed that immunized rabbits had more intact lung tissue than their unimmunized counterparts after the challenge. Additionally, there appears to be a positive correlation between the protective efficacy and the immunization dose. In conclusion, the different immunization doses of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine were clinically safe in rabbits; the mix of 2.0 × 108 CFU of M. bovis HB150 and 2.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its highest humoral and cellular immune responses and a more complete morphology of the lung tissue compared with others. These findings determined the optimal immunization dose of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine, laying a foundation for its clinical application.

8.
mSystems ; 9(4): e0089123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38440990

RESUMEN

Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1ß, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE: Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma bovis , Femenino , Humanos , Mycoplasma bovis/genética , Lipopolisacáridos , Adhesión Bacteriana , Inmunidad , Fosfoproteínas Fosfatasas , ARN Mensajero , Serina
9.
J Vet Sci ; 25(1): e18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311330

RESUMEN

Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Bovinos , Femenino , Animales , Mastitis Bovina/diagnóstico , Industria Lechera , Granjas , Leche
10.
Prev Vet Med ; 224: 106115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219433

RESUMEN

Bovine brucellosis, primarily caused by Brucella abortus, severely affects both animal health and human well-being. Accurate diagnosis is crucial for designing informed control and prevention measures. Lacking a gold standard test makes it challenging to determine optimal cut-off values and evaluate the diagnostic performance of tests. In this study, we developed a novel Bayesian Latent Class Model that integrates both binary and continuous testing outcomes, incorporating additional fixed (parity) and random (farm) effects, to calibrate optimal cut-off values by maximizing Youden Index. We tested 651 serum samples collected from six dairy farms in two regions of Henan Province, China with four serological tests: Rose Bengal Test, Serum Agglutination Test, Fluorescence Polarization Assay, and Competitive Enzyme-Linked Immunosorbent Assay. Our analysis revealed that the optimal cut-off values for FPA and C-ELISA were 94.2 mP and 0.403 PI, respectively. Sensitivity estimates for the four tests ranged from 69.7% to 89.9%, while specificity estimates varied between 97.1% and 99.6%. The true prevalences in the two study regions in Henan province were 4.7% and 30.3%. Parity-specific odds ratios for positive serological status ranged from 1.2 to 2.2 for different parity groups compared to primiparous cows. This approach provides a robust framework for validating diagnostic tests for both continuous and discrete tests in the absence of a gold standard test. Our findings can enhance our ability to design targeted disease detection strategies and implement effective control measures for brucellosis in Chinese dairy farms.


Asunto(s)
Brucelosis Bovina , Brucelosis , Enfermedades de los Bovinos , Femenino , Humanos , Bovinos , Animales , Brucella abortus , Teorema de Bayes , Análisis de Clases Latentes , Sensibilidad y Especificidad , Pruebas de Aglutinación/veterinaria , Brucelosis/epidemiología , Brucelosis/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Brucelosis Bovina/diagnóstico , Brucelosis Bovina/epidemiología , Anticuerpos Antibacterianos , Pruebas Serológicas/veterinaria
11.
BMC Cancer ; 24(1): 15, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166744

RESUMEN

BACKGROUND: Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 2 (APOBEC2) is associated with nucleotide alterations in the transcripts of tumor-related genes which are contributed to carcinogenesis. Expression and prognosis value of APOBEC2 in stomach adenocarcinoma (STAD) remains unclear. METHODS: The APOBEC2 gene alteration frequency of STAD and APOBEC2 gene expression in STAD and normal tissues were investigated in cBioportal and GEPIA, respectively. We detected expression of APOBEC2, infiltration of CD66b+ tumor-associated neutrophils and CD163+ tumor-associated macrophages in tissue microarrays by immunohistochemistry. APOBEC2 gene expression was explored by western blot and qRT-PCR. Relationships between APOBEC2 and CD66b, CD163, and other clinicopathological characteristics were investigated. Associations among APOBEC2 expression status and patient survival outcome were further analyzed. RESULTS: APOBEC2 gene alteration frequency was 5%, and APOBEC2 gene was downexpressed in STAD compared to normal tissues (P < 0.05). APOBEC2 expression status were associated with the infiltration of CD66b+ TANs, differentiation grade, TNM stage, histological type and gender (all P < 0.05) in STAD. Little or no APOBEC2 expression was detected in STAD and adjacent normal tissues by western blot. We failed to show that APOBEC2 was an independent risk factor for OS (Hazard Ratio 0.816, 95%CI 0.574-1.161, P = 0.259) or DFS (Hazard Ratio 0.821, 95%CI 0.578-1.166, P = 0.270) in STAD by multivariate Cox regression analysis, but APOBEC2 negative subgroup has a worse OS and DFS among patients with adjuvant chemotherapy. CONCLUSIONS: APOBEC2 correlates with CD66b, differentiation grade, TNM stages, histological classification, and gender in STAD. APOBEC2 is not an independent prognostic factor for STAD, our results suggest that patients with positive APOBEC2 can benefit from postoperative chemotherapy, and combination of APOBEC2 and CD66b is helpful to further stratify patients into different groups with distinct prognoses.


Asunto(s)
Desaminasas APOBEC , Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/patología , Desaminasas APOBEC/metabolismo , Proteínas Musculares , Neutrófilos/patología , Nucleótidos/metabolismo , Pronóstico , Modelos de Riesgos Proporcionales , Neoplasias Gástricas/metabolismo
12.
Front Microbiol ; 14: 1250368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098652

RESUMEN

Nucleotide second messengers play an important role in bacterial adaptation to environmental changes. Recent evidence suggests that some of these regulatory molecular pathways were conserved upon the degenerative evolution of the wall-less mycoplasmas. We have recently reported the occurrence of a phosphodiesterase (PDE) in the ruminant pathogen Mycoplasma bovis, which was involved in c-di-AMP metabolism. In the present study, we demonstrate that the genome of this mycoplasma species encodes a PDE of the GdpP family with atypical DHH domains. Characterization of M. bovis GdpP (MbovGdpP) revealed a multifunctional PDE with unusual nanoRNase and single-stranded DNase activities. The alarmone ppGpp was found unable to inhibit c-di-NMP degradation by MbovGdpP but efficiently blocked its nanoRNase activity. Remarkably, MbovGdpP was found critical for the osmotic tolerance of M. bovis under K+ and Na+ conditions. Transcriptomic analyses further revealed the biological importance of MbovGdpP in tRNA biosynthesis, pyruvate metabolism, and several steps in genetic information processing. This study is an important step in understanding the role of PDE and nucleotide second messengers in the biology of a minimal bacterial pathogen.

13.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139387

RESUMEN

Circular RNAs (circRNAs) are noncoding RNAs with diverse functions. However, most Mycobacterium tuberculosis (M.tb)-related circRNAs remain undiscovered. In this study, we infected THP-1 cells with virulent and avirulent M.tb strains and then sequenced the cellular circRNAs. Bioinformatic analysis predicted 58,009 circRNAs in all the cells. In total, 2035 differentially expressed circRNAs were identified between the M.tb-infected and uninfected THP-1 cells and 1258 circRNAs were identified in the virulent and avirulent M.tb strains. Further, the top 10 circRNAs were confirmed by Sanger sequencing, among which four circRNAs, namely circSOD2, circCHSY1, circTNFRSF21, and circDHTKD1, which were highly differentially expressed in infected cells compared with those in uninfected cells, were further confirmed by ring formation, specific primers, and RNase R digestion. Next, circRNA-miRNA-mRNA subnetworks were constructed, such as circDHTKD1/miR-660-3p/IL-12B axis. Some of the individual downstream genes, such as miR-660-3p and IL-12B, were previously reported to be associated with cellular defense against pathological processes induced by M.tb infection. Because macrophages are important immune cells and the major host cells of M.tb, these findings provide novel ideas for exploring the M.tb pathogenesis and host defense by focusing on the regulation of circRNAs during M.tb infection.


Asunto(s)
MicroARNs , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismo , ARN Mensajero/genética
14.
Vet Sci ; 10(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133236

RESUMEN

The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several countries, including China. M. bovis is an important cause of the bovine respiratory disease complex (BRD), characterized worldwide by pneumonia, arthritis, and mastitis. Secreted proteins of bacteria are generally considered virulence factors because they can act as toxins, adhesins, and virulent enzymes in infection. Therefore, this study performed a comparative proteomic analysis of the secreted proteins of M. bovis and Mmm in order to find some virulence-related factors as well as discover differential diagnostic biomarkers for these bovine mycoplasmas. The secretome was extracted from both species, and liquid chromatography-tandem mass spectrometry was used, which revealed 55 unique secreted proteins of M. bovis, 44 unique secreted proteins of Mmm, and 4 homologous proteins. In the M. bovis secretome, 19 proteins were predicted to be virulence factors, while 4 putative virulence factors were identified in the Mmm secretome. In addition, five unique secreted proteins of Mmm were expressed and purified, and their antigenicity was confirmed by Western blotting assay and indirect ELISA. Among them, Ts1133 and Ts0085 were verified as potential candidates for distinguishing Mmm infection from M. bovis infection.

15.
Vaccines (Basel) ; 11(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38006030

RESUMEN

Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the development of attenuated M. bovis HB150 and BoHV-1 gG-/tk- vaccine strains, which were thoroughly assessed for their safety profiles and protective efficacy in cattle. In this study, we applied a combination of vaccines in varying ratios and used a rabbit model to determine the safety and protective efficacy. We used PCR/RT-PCR to detect the postimmunization and challenge shedding of M. bovis and BoHV-1. Additionally, we measured antibody titers and the expression of IFN-ß and TNF-α to evaluate the humoral and cellular immune responses, respectively. Furthermore, we performed a histopathological analysis to assess lung damage. Our study provides evidence of the safety and effectiveness of the bivalent M. bovis-BoHV-1 vaccine in rabbits, particularly when applying a combination of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 of the BoHV-1 gG-/tk- strain. The bivalent vaccine significantly enhanced both the long-term antibody immune response and cellular protection against the M. bovis and BoHV-1 challenge. These findings provide a valuable model for the potential application in cattle.

16.
Cells ; 12(22)2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37998339

RESUMEN

E. coli is a ubiquitous pathogen that is responsible for over one million fatalities worldwide on an annual basis. In animals, E. coli can cause a variety of diseases, including mastitis in dairy cattle, which represents a potential public health hazard. However, the pathophysiology of E. coli remains unclear. We found that E. coli could induce global upregulation of m6A methylation and cause serious apoptosis in bovine mammary epithelial cells (MAC-T cells). Furthermore, numerous m6A-modified lncRNAs were identified through MeRIP-seq. Interestingly, we found that the expression of LOC4191 with hypomethylation increased in MAC-T cells upon E. coli-induced apoptosis. Knocking down LOC4191 promoted E. coli-induced apoptosis and ROS levels through the caspase 3-PARP pathway. Meanwhile, knocking down ALKBH5 resulted in the promotion of apoptosis through upregulated ROS and arrested the cell cycle in MAC-T cells. ALKBH5 silencing accelerated LOC4191 decay by upregulating its m6A modification level, and the process was recognized by hnRNP A1. Therefore, this indicates that ALKBH5 stabilizes m6A-modified LOC4191 to suppress E. coli-induced apoptosis. This report discusses an initial investigation into the mechanism of m6A-modified lncRNA in cells under E. coli-induced apoptosis and provides novel insights into infectious diseases.


Asunto(s)
Apoptosis , Escherichia coli , Femenino , Animales , Bovinos , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/genética , Metilación de ADN
17.
Cells ; 12(22)2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37998345

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), remains a significant global health challenge. The survival of M. tb in hostile extracellular and intracellular microenvironments is crucial for its pathogenicity. In this study, we discovered a Bacillus Calmette-Guérin (BCG) mutant B1033 that potentially affected mycobacterium pathogenicity. This mutant contained an insertion mutation gene, fadD33, which is involved in lipid metabolism; however, its direct role in regulating M. tb infection is not well understood. Here, we found that the absence of fadD33 reduced BCG adhesion and invasion into human pulmonary alveolar epithelial cells and increased the permeability of the mycobacterial cell wall, allowing M. tb to survive in the low pH and membrane pressure extracellular microenvironment of the host cells. The absence of fadD33 also inhibited the survival of BCG in macrophages by promoting the release of proinflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumors necrosis factor-α, through the mitogen-activated protein kinase p38 signaling pathway. Overall, these findings provide new insights into M. tb mechanisms to evade host defenses and might contribute to identifying potential therapeutic and vaccine targets for tuberculosis prevention.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Vacuna BCG , Ligasas
18.
Front Microbiol ; 14: 1210358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779705

RESUMEN

Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli.

19.
Animals (Basel) ; 13(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893888

RESUMEN

Infectious bovine rhinotracheitis (IBR) caused by bovine herpes virus 1 (BoHV-1) can lead to enormous economic losses in the cattle industry. Vaccine immunization is preferentially used to decrease its transmission speed and resultant clinical signs, rather than to completely stop viral infection. Therefore, a drug effective in treating IBR is urgently needed. Our previous work demonstrated that ivermectin significantly inhibited viral replication in a cell infection model. This study aimed to investigate its antiviral effects in vivo by using a rabbit infection model. The viral inhibition assay was first used to confirm that ivermectin at low concentrations (6-25 nM) could reduce viral titers (TCID50) significantly (p < 0.001) at 24 h post-infection. In rabbits, ivermectin was administrated with one to three doses, based on the recommended anti-parasite treatment dosage (0.2 mg/kg bodyweight) through subcutaneous injection at different days post-infection in the treated IBRV infection groups, while non-treated infection group was used as the control. The infected rabbits showed hyperthermia and other clinical signs, but the number of high-fever rabbits in the ivermectin treatment groups was significantly lower than that in the non-treated infection group. Furthermore, in ivermectin treatment groups, the cumulative clinical scores correlated negatively with drug doses and positively with delay of administration time post-infection. The overall nasal shedding time in ivermectin-treated groups was two days shorter than the non-treated challenge group. At the same time point, the titer of neutralizing antibodies in the treatment group with triple doses was higher than the other two-dose groups, but the difference between the treatment groups decreased with the delay of drug administration. Correspondingly, the serious extent of lung lesions was negatively related to the dosage, but positively related to the delay of drug administration. The qPCR with tissue homogenates showed that the virus was present in both the lung tissues and trigeminals of the infected rabbits. In conclusion, ivermectin treatment had therapeutic effect by decreasing clinical signs and viral shedding, but could not stop virus proliferation in lung tissues and trigeminals.

20.
Front Vet Sci ; 10: 1255239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876633

RESUMEN

Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA