Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
Zool Res ; 45(3): 617-632, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766745

RESUMEN

The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.


Asunto(s)
Glándulas Suprarrenales , Esteroides , Animales , Glándulas Suprarrenales/metabolismo , Humanos , Esteroides/biosíntesis , Esteroides/metabolismo , Transcriptoma , Ratones , Tupaiidae , Femenino , Multiómica
2.
World J Gastrointest Oncol ; 16(5): 2038-2059, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764836

RESUMEN

BACKGROUND: Heterogeneous ribonucleoprotein A1 (hnRNPA1) has been reported to enhance the Warburg effect and promote colon cancer (CC) cell proliferation, but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated. AIM: To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway. METHODS: Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b. The relationship between the expression values and the clinicopathological features of the patients was investigated. Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction, while differences in protein expression were analyzed using western blot. Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and cell cycle and apoptosis were detected using flow cytometric assays. The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay. The Warburg effect was evaluated by glucose uptake and lactic acid production assays. RESULTS: The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls (P < 0.05). Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC, including stage I, II-III, and IV. Furthermore, the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification. HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway, thereby promoting proliferation of HCT116 and SW620 cells. However, the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b, effectively blocking the Warburg effect. CONCLUSION: These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.

3.
Chem Commun (Camb) ; 60(42): 5546-5549, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38700121

RESUMEN

Airborne nanoplastics can enter alveolar cells and trigger intracellular oxidative stress primarily. Herein, taking advantage of the high electrochemical resolution of SiC@Pt nanoelectrodes, we achieved the quantitative discrimination of the major ROS/RNS within A549 cells, disclosed the sources of their precursors, and observed that the NO (RNS precursor) level significantly increased, whereas O2˙- (ROS precursor) remained relatively stable during the nanoplastics exposure. This establishes that iNOS or mitochondrion-targeted treatment may be a preventive or therapeutic strategy for nanoplastic-induced lung injury.


Asunto(s)
Técnicas Electroquímicas , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Especies de Nitrógeno Reactivo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Electrodos
4.
J Asian Nat Prod Res ; : 1-10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753580

RESUMEN

Nine jatrophane diterpenoids were isolated from the whole plant Euphorbia helioscopia, including two new ones, helioscopnins A (1) and B (2). Comprehensive spectroscopic data analysis and ECD calculations elucidated their structures, including absolute configurations. All compounds were evaluated for bioactivity towards autophagic flux by flow cytometry using HM mCherry-GFP-LC3 cells. Compounds 1, 3, 4, 5, 8, and 9 significantly increased autophagic flux.

5.
J Am Heart Assoc ; 13(10): e033455, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38761074

RESUMEN

BACKGROUND: The health effects of particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) might differ depending on compositional variations. Little is known about the joint effect of PM2.5 constituents on metabolic syndrome and cardiovascular disease (CVD). This study aims to evaluate the combined associations of PM2.5 components with CVD, identify the most detrimental constituent, and further quantify the mediation effect of metabolic syndrome. METHODS AND RESULTS: A total of 14 427 adults were included in a cohort study in Sichuan, China, and were followed to obtain the diagnosis of CVD until 2021. Metabolic syndrome was defined by the simultaneous occurrence of multiple metabolic disorders measured at baseline. The concentrations of PM2.5 chemical constituents within a 1-km2 grid were derived based on satellite- and ground-based detection methods. Cox proportional hazard models showed that black carbon, organic matter (OM), nitrate, ammonium, chloride, and sulfate were positively associated with CVD risks, with hazard ratios (HRs) ranging from 1.24 to 2.11 (all P<0.05). Quantile g-computation showed positive associations with 4 types of CVD risks (HRs ranging from 1.48 to 2.25, all P<0.05). OM and chloride had maximum weights for CVD risks. Causal mediation analysis showed that the positive association of OM with total CVD was mediated by metabolic syndrome, with a mediation proportion of 1.3% (all P<0.05). CONCLUSIONS: Long-term exposure to PM2.5 chemical constituents is positively associated with CVD risks. OM and chloride appear to play the most responsible role in the positive associations between PM2.5 and CVD. OM is probably associated with CVD through metabolic-related pathways.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome Metabólico , Material Particulado , Humanos , Material Particulado/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Masculino , China/epidemiología , Femenino , Persona de Mediana Edad , Síndrome Metabólico/epidemiología , Estudios Prospectivos , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Medición de Riesgo , Anciano , Factores de Tiempo , Tamaño de la Partícula , Factores de Riesgo , Contaminación del Aire/efectos adversos
7.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746392

RESUMEN

Genomic surveillance is crucial for identifying at-risk populations for targeted malaria control and elimination. Identity-by-descent (IBD) is being used in Plasmodium population genomics to estimate genetic relatedness, effective population size ( N e ), population structure, and positive selection. However, a comprehensive evaluation of IBD segment detection tools is lacking for species with high rates of recombination. Here, we employ genetic simulations reflecting P. falciparum 's high recombination rate and decreasing N e to benchmark IBD callers, including probabilistic (hmmIBD, isoRelate), identity-by-state-based (hap-IBD, phased IBD) and others (Refined IBD), using genealogy-based true IBD and downstream inference of population characteristics. Our findings reveal that low marker density per genetic unit, related to high recombination rates relative to mutation rates, significantly affects the quality of detected IBD segments. Most IBD callers suffer from high false negative rates, which can be improved with parameter optimization. Optimized parameters allow for more accurate capture of selection signals and population structure, but hmmIBD is unique in providing less biased estimates of N e . Empirical data subsampled from the MalariaGEN Pf 7 database, representing different transmission settings, confirmed these patterns. We conclude that the detection of IBD in high-recombining species requires context-specific evaluation and parameter optimization and recommend that hmmIBD be used for quality-sensitive analysis, such as estimation of N e in these species.

8.
Front Psychol ; 15: 1352878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746915

RESUMEN

Background: The Barthel Index (BI) is used to standardize the grading of assessments for clinical needs, insurance support, and long-term care resource allocation in China. However, its psychometric properties among nursing home residents remain unclear. Therefore, this study aims to assess and modify the psychometric properties of BI in nursing home residents. Methods: A total of 1,402 individuals undergoing evaluation in a nursing home facility in China were included in this study from November 2021 to November 2022. Correlations between items were examined to identify the potential multicollinearity concerns. The unidimensional item response theory (IRT) was used to validate and modify the single structure of BI. Furthermore, the logistic regression/IRT hybrid DIF detection method was conducted to assess differential item functioning (DIF) between the dementia group and the normal group. Results: The pairing of items 5 ("bowl control") and 6 ("bladder control") revealed a local dependence issue, leading to their consolidation. Items 56 (bowel and bladder control) and 9 (mobility) both displayed poor fit indices and underwent category collapsing. Through the application of the generalized partial credit model, the adjusted scale displayed better fit indices, demonstrating a robust discriminative power (DC >1.5) and orderly thresholds. Furthermore, non-uniform DIF was identified in item 2 (bathing) between the dementia group and the normal group. Conclusion: The modified BI demonstrated favorable psychometric properties and proved to be suitable for evaluating nursing home residents experiencing moderate functional impairment, which may provide a precise evaluation for long-term care resource allocation. Future studies could explore integrating supplementary measurements, such as objective indices, to assess a broader spectrum of functional statuses to potentially enhance the limited precision width observed in BI.

9.
Small ; : e2401834, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623962

RESUMEN

Different facets in perovskite crystals exhibit distinct atomic arrangements, influencing their electronic, physical, and chemical properties. Perovskite films incorporating tin oxide (SnO2) as the electron transport layer face challenges in facet regulation. This study reveals that tea saponin (TS), a natural compound serves as a SnO2 modifier, facilitates optimal growth of perovskite crystals on the (111) facet. The modification promotes preferential crystal orientation through hydrogen bond and Lewis coordination. TS forms a chelate with SnO2, resulting in a smoother film and n-type doping, leading to improved carrier extraction and reduced defects. The TS-modified perovskite solar cells achieve a champion efficiency of 24.2%, leveraging from an obvious enhancement of open-circuit voltage (Voc) of 1.18 V and fill factor (FF) of 82.8%. The devices also demonstrate enhanced humidity tolerance and storage stability, ensuring improved stability without encapsulation.

10.
J Nanobiotechnology ; 22(1): 171, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610017

RESUMEN

Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Boca , Humanos , Medicina de Precisión , Sistemas de Liberación de Medicamentos , Saliva
11.
Environ Geochem Health ; 46(5): 174, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592609

RESUMEN

The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.


Asunto(s)
Compuestos de Amonio , Insuficiencia Renal Crónica , Humanos , Adulto , Nitratos , China/epidemiología , Material Particulado/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/epidemiología , Suelo , Sulfatos , Óxidos de Azufre
12.
Int J Biol Macromol ; 268(Pt 1): 131781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657924

RESUMEN

Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.


Asunto(s)
Empalme Alternativo , Precursores del ARN , Células Madre , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Animales , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular/genética
13.
Biomed Environ Sci ; 37(2): 228-232, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582987

RESUMEN

As a reducing salt, sodium sulfite could deprive oxygen in solution, which could mimic hypoxic stress in Caenorhabditis elegans. In this study, the wild-type Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. We also analyzed the growth curves of mutant strains (for arcA/B, soxR/S, fnr, and oxyR) related to E. coli hypoxic pathways to reveal roles of the related genes during hypoxia. The ultrastructure of hypoxia-inhibited bacteria were also observed using transmission electron microscopy. Sodium sulfite could maintain hypoxic condition of bacterial culture for 8 h with concentrations over 40 mmol/L. Complete ultrastructure of the bacteria indicated sodium sulfite did inhibit bacterial growth and division. Among the hypoxia genes, fnr and arcB played key roles in sodium sulfite-induced hypoxia. This study showed that sodium sulfite could be used as a novel hypoxia revulsant for bacterial cultures.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Sulfitos , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Hipoxia , Regulación Bacteriana de la Expresión Génica
14.
Medicine (Baltimore) ; 103(17): e37898, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669428

RESUMEN

Nonischemic cardiomyopathy (NICM) is a major cause of advanced heart failure, and the morbidity and mortality associated with NICM are serious medical problems. However, the etiology of NICM is complex and the related mechanisms involved in its pathogenesis remain unclear. The microarray datasets GSE1869 and GSE9128 retrieved from the Gene Expression Omnibus database were used to identify differentially expressed genes (DEGs) between NICM and normal samples. The co-expressed genes were identified using Venn diagrams. Kyoto Encyclopedia of Genes and Genomes pathway analyses and gene ontology enrichment were used to clarify biological functions and signaling pathways. Analysis of protein-protein interaction networks using Search Tool for the Retrieval of Interacting Genes/Proteins online to define the hub genes associated with NICM pathogenesis. A total of 297 DEGs were identified from GSE1869, 261 of which were upregulated genes and 36 were downregulated genes. A total of 360 DEGs were identified from GSE9128, 243 of which were upregulated genes and 117 were downregulated genes. In the 2 datasets, the screening identified 36 co-expressed DEGs. Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology analysis showed that DEGs were mainly enriched in pantothenate and CoA biosynthesis, beta-alanine metabolism, kinetochore, G-protein beta/gamma-subunit complex, and other related pathways. The PPI network analysis revealed that DUSP6, EGR1, ZEB2, and XPO1 are the 4 hub genes of interest in the 2 datasets. Bioinformatics analysis of hub genes and key signaling pathways is an effective way to elucidate the mechanisms involved in the development of NICM. The results will facilitate further studies on the pathogenesis and therapeutic targets of NICM.


Asunto(s)
Cardiomiopatías , Biología Computacional , Mapas de Interacción de Proteínas , Cardiomiopatías/genética , Humanos , Biología Computacional/métodos , Mapas de Interacción de Proteínas/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Transducción de Señal/genética , Ontología de Genes , Bases de Datos Genéticas
15.
Nanoscale ; 16(18): 8759-8777, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38619821

RESUMEN

Cancer, the leading global cause of mortality, poses a formidable challenge for treatment. The effectiveness of cancer therapies, ranging from chemotherapy to immunotherapy, relies on the precise delivery of therapeutic agents to tumor tissues. Nanobiohybrids, resulting from the fusion of bacteria with nanomaterials, constitute a promising delivery system. Nanobiohybrids offer several advantages, including the ability to target tumors, genetic engineering capabilities, programmed product creation, and the potential for multimodal treatment. Recent advances in targeted tumor treatments have leveraged bacteria-based nanobiohybrids. Here, we outline the progress in cancer treatment using nanobiohybrids. Our focus is particularly on various therapeutic approaches within the context of nanobiohybrid systems, where bacteria are integrated with nanomaterials to combat cancer. It has been demonstrated that bacteria-based nanobiohybrids present a robust and effective method for tumor theranostics.


Asunto(s)
Bacterias , Neoplasias , Neoplasias/terapia , Humanos , Bacterias/metabolismo , Animales , Sistemas de Liberación de Medicamentos , Nanomedicina Teranóstica , Inmunoterapia , Nanoestructuras/química , Nanoestructuras/uso terapéutico
16.
Theranostics ; 14(6): 2345-2366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646645

RESUMEN

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Asunto(s)
Histona Desacetilasa 6 , Ratones Transgénicos , Factor de Crecimiento Nervioso , Folículo Ovárico , Ubiquitinación , Animales , Femenino , Humanos , Ratones , Acetilación , Células de la Granulosa/metabolismo , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Factor de Crecimiento Nervioso/metabolismo , Folículo Ovárico/metabolismo
17.
Autophagy ; : 1-21, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686804

RESUMEN

Obesity is one of the most common metabolic diseases around the world, which is distinguished by the abnormal buildup of triglycerides within adipose cells. Recent research has revealed that autophagy regulates lipid mobilization to maintain energy balance. TIGAR (Trp53 induced glycolysis regulatory phosphatase) has been identified as a glycolysis inhibitor, whether it plays a role in the metabolism of lipids is unknown. Here, we found that TIGAR transgenic (TIGAR+/+) mice exhibited increased fat mass and trended to obesity phenotype. Non-target metabolomics showed that TIGAR caused the dysregulation of the metabolism profile. The quantitative transcriptome sequencing identified an increased levels of LRRK2 and RAB7B in the adipose tissue of TIGAR+/+ mice. It was confirmed in vitro that TIGAR overexpression increased the levels of LRRK2 by inhibiting polyubiquitination degradation, thereby suppressing macroautophagy and chaperone-mediated autophagy (CMA) while increasing lipid accumulation which were reversed by the LRRK2 inhibitor DNL201. Furthermore, TIGAR drove LRRK2 to interact with RAB7B for suppressing lysosomal degradation of lipid droplets, while the increased lipid droplets in adipocytes were blocked by the RAB7B inhibitor ML282. Additionally, fat-specific TIGAR knockdown of TIGAR+/+ mice alleviated the symptoms of obesity, and adipose tissues-targeting superiority DNL201 nano-emulsion counteracted the obesity phenotype in TIGAR+/+ mice. In summary, the current results indicated that TIGAR performed a vital function in the lipid metabolism through LRRK2-mediated negative regulation of macroautophagy and CMA in adipocyte. The findings suggest that TIGAR has the potential to serve as a viable therapeutic target for treating obesity and its associated metabolic dysfunction.

18.
Nat Commun ; 15(1): 2499, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509066

RESUMEN

Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Malaria Falciparum/parasitología , Sesgo de Selección , Antimaláricos/farmacología , Demografía
19.
Int J Biol Macromol ; 264(Pt 2): 130718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460651

RESUMEN

Chinese quince fruits (Chaenomeles sinensis) contain substantial amounts of lignin; however, the exact structure of lignin remains to be investigated. In this study, milled wood lignins (Milled wood lignin (MWL)-1, MWL-2, MWL-3, MWL-4, MWL-5, and MWL-6) were extracted from fruits harvested once a month from May to October 2019 to investigate their structural evolution during fruit growth. The samples were characterized via High-performance anion exchange chromatography (HPAEC), Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), thermogravimetric (TGA), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and NMR (2D-heteronuclear single quantum coherence (HSQC) and 31P). The MWL samples in all fruit growth stages were GS-type lignin and lignin core undergoing minimal alterations during fruit development. The predominant linkage in the lignin structure was ß-O-4', followed by ß-ß' and ß-5'. Galactose and glucose were the main monosaccharides associated with MWL. In MWL-6, the lignin exhibited the highest homogeneity and thermal stability. As the fruit matured, a gradual increase in the ß-O-4' proportion and the ratio of S/G was observed. The results provide comprehensive characterization of the cell wall lignin of quince fruit as it matures. This study could inspire innovative applications of quince fruit lignin and provide the optimal harvest time for lignin utilization.


Asunto(s)
Lignina , Rosaceae , Lignina/química , Frutas/química , Espectroscopía Infrarroja por Transformada de Fourier , Rosaceae/química , Madera/química , China
20.
Front Chem ; 12: 1378324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476653

RESUMEN

Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA