Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 236, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561660

RESUMEN

BACKGROUND: Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS: Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS: Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.


Asunto(s)
Hordeum , Hordeum/genética , Hordeum/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Reguladores del Crecimiento de las Plantas , Hormonas , Estrés Fisiológico/genética
2.
Opt Lett ; 49(7): 1749-1752, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560853

RESUMEN

Non-contact optical temperature measurement can effectively avoid the disadvantages of traditional contact thermometry and thus, become a hot research topic. Herein, a fluorescence intensity ratio (FIR) thermometry using a time-resolved technique based on La2CaZrO6:Cr3+ (LCZO) is proposed, with a maximum relative sensitivity (Sr - FIR) of 2.56% K-1 at 473 K and a minimum temperature resolution of 0.099 K. Moreover, the relative sensitivity and temperature resolution can be effectively controlled by adjusting the width of the time gate based on the time-resolved technique. Our work provides, to our knowledge, new viewpoints into the development of novel optical thermometers with adjustable relative sensitivity and temperature resolution on an as-needed basis.

3.
J Adv Res ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38199453

RESUMEN

INTRODUCTION: Gibberellin (GA) is a vital phytohormone in regulating plant growth and development. During the "Green Revolution", modification of GA-related genes created semi-dwarfing phenotype in cereal crops but adversely affected grain weight. Gibberellin 2-oxidases (GA2oxs) in barley act as key catabolic enzymes in deactivating GA, but their functions are still less known. OBJECTIVES: This study investigates the physiological function of two HvGA2ox genes in barley and identifies novel semi-dwarf alleles with minimum impacts on other agronomic traits. METHODS: Virus-induced gene silencing and CRISPR/Cas9 technology were used to manipulate gene expression of HvGA2ox9 and HvGA2ox8a in barley and RNA-seq was conducted to compare the transcriptome between wild type and mutants. Also, field trials in multiple environments were performed to detect the functional haplotypes. RESULTS: There were ten GA2oxs that distinctly expressed in shoot, tiller, inflorescence, grain, embryo and root. Knockdown of HvGA2ox9 did not affect plant height, while ga2ox8a mutants generated by CRISPR/Cas9 increased plant height and significantly altered seed width and weight due to the increased bioactive GA4 level. RNA-seq analysis revealed that genes involved in starch and sucrose metabolism were significantly decreased in the inflorescence of ga2ox8a mutants. Furthermore, haplotype analysis revealed one naturally occurring HvGA2ox8a haplotype was associated with decreased plant height, early flowering and wider and heavier seed. CONCLUSION: Our results demonstrate the potential of manipulating GA2ox genes to fine tune GA signalling and biofunctions in desired plant tissues and open a promising avenue for minimising the trade-off effects of Green Revolution semi-dwarfing genes on grain size and weight. The knowledge will promote the development of next generation barley cultivars with better adaptation to a changing climate.

4.
Plant Commun ; 5(1): 100670, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563835

RESUMEN

Grain number, one of the major determinants of yield in Triticeae crops, is largely determined by spikelet number and spike rachis node number (SRN). Here, we identified three quantitative trait loci (QTLs) for SRN using 145 recombinant inbred lines derived from a barley R90/1815D cross. qSRN1, the major-effect QTL, was mapped to chromosome 2H and explained up to 38.77% of SRN variation. Map-based cloning revealed that qSRN1 encodes the RAWUL domain-containing protein HvSRN1. Further analysis revealed that two key SNPs in the HvSRN1 promoter region (∼2 kb upstream of the transcription start site) affect the transcript level of HvSRN1 and contribute to variation in SRN. Similar to its orthologous proteins OsLAX2 and ZmBA2, HvSRN1 showed protein-protein interactions with HvLAX1, suggesting that the LAX2-LAX1 model for spike morphology regulation may be conserved in Poaceae crops. CRISPR-Cas9-induced HvSRN1 mutants showed reduced SRN but increased grain size and weight, demonstrating a trade-off effect. Our results shed light on the role of HvSRN1 variation in regulating the balance between grain number and weight in barley.


Asunto(s)
Hordeum , Hordeum/genética , Sitios de Carácter Cuantitativo/genética , Grano Comestible/genética , Poaceae/genética , Productos Agrícolas/genética
6.
BMC Plant Biol ; 23(1): 580, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37986037

RESUMEN

BACKGROUND: DNA marker profiles play a crucial role in the identification and registration of germplasm, as well as in the distinctness, uniformity, and stability (DUS) testing of new plant variety protection. However, selecting minimal marker sets from large-scale SNP dataset can be challenging to distinguish a maximum number of samples. RESULTS: Here, we developed the CoreSNP pipeline using a "divide and conquer" strategy and a "greedy" algorithm. The pipeline offers adjustable parameters to guarantee the distinction of each sample pair with at least two markers. Additionally, it allows datasets with missing loci as input. The pipeline was tested in barley, soybean, wheat, rice and maize. A few dozen of core SNPs were efficiently selected in different crops with SNP array, GBS, and WGS dataset, which can differentiate thousands of individual samples. The core SNPs were distributed across all chromosomes, exhibiting lower pairwise linkage disequilibrium (LD) and higher polymorphism information content (PIC) and minor allele frequencies (MAF). It was shown that both the genetic diversity of the population and the characteristics of the original dataset can significantly influence the number of core markers. In addition, the core SNPs capture a certain level of the original population structure. CONCLUSIONS: CoreSNP is an efficiency way of core marker sets selection based on Genome-wide SNP datasets of crops. Combined with low-density SNP chip or genotyping technologies, it can be a cost-effective way to simplify and expedite the evaluation of genetic resources and differentiate different crop varieties. This tool is expected to have great application prospects in the rapid comparison of germplasm and intellectual property protection of new varieties.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Genotipo , Polimorfismo de Nucleótido Simple/genética , Desequilibrio de Ligamiento/genética , Marcadores Genéticos , Productos Agrícolas/genética
7.
Opt Express ; 31(16): 25978-25992, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710470

RESUMEN

Although Cr3+ as activator for Near infrared (NIR) phosphors has been widely studied, the peaks of Cr3+ emission spectra in most hosts are less than 1000 nm. Nd3+ as an activator in many hosts has a wide distribution of absorption peaks in the Ultraviolet-visible-Near infrared (UV-vis-NIR) band, especially in the 650-900 nm band for effective NIR to NIR Stokes luminescence (4F3/2→4I9/2, 4F3/2→4I11/2 transitions). Therefore, Cr3+, Nd3+ co-doping to achieve the emission in the NIR II region (1000-1700nm) is very meaningful. Here, we report La2CaZrO6(LCZO): Cr3+, Nd3+ NIR phosphors with emission spectra covering an ultra-wide range of 700-1400 nm and reveal their luminescence mechanism. The energy transfer efficiency of Cr3+ for Nd3+ can be as high as 88.4% under 471 nm blue light excitation. In the same case, the integrated intensity of the emission spectra of Cr3+, Nd3+ co-doped can reach 847% of that of Nd3+ alone and 204% of that of Cr3+ alone. Finally, the combination of commercial blue light chips and Cr3+, Nd3+ co-doped NIR phosphors shows great potential for applications in face recognition, night lighting, and angiography.

8.
Front Plant Sci ; 14: 1189743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484471

RESUMEN

Introduction: Multiple nodes and dwarf mutants in barley are a valuable resource for identifying genes that control shoot branching, vegetative growth and development. Methods: In this study, physiological, microscopic and genetic analysis were conducted to characterize and fine-map the underling gene of a barley mutant with Multiple Stem Nodes and Spikes and Dwarf (msnsd), which was selected from EMS- and 60Co-treated barley cv. Edamai 934. Results and discussion: The msnsd mutant had more stem nodes, lower plant height and a shorter plastochron than Edamai 934. Moreover, the mutant had two or more spikes on each tiller. Microscopic analysis showed that the dwarf phenotype of msnsd resulted from reduced cell lengths and cell numbers in the stem. Further physiological analysis showed that msnsd was GA3-deficient, with its plant height increasing after external GA3 application. Genetic analysis revealed that a single recessive nuclear gene, namely, HvMSNSD, controlled the msnsd phenotype. Using a segregating population derived from Harrington and the msnsd mutant, HvMSNSD was fine-mapped on chromosome 5H in a 200 kb interval using bulked segregant analysis (BSA) coupled with RNA-sequencing (BSR-seq), with a C-T substitution in the exon of HvTCP25 co-segregating with the msnsd phenotype. RNA-seq analysis showed that a gene encoding gibberellin 2-oxidase 8, a negative regulator of GA biosynthesis, was upregulated in the msnsd mutant. Several known genes related to inflorescence development that were also upregulated and enriched in the msnsd mutant. Collectively, we propose that HvMSNSD regulates the plastochron and morphology of reproductive organs, likely by coordinating GA homeostasis and changed expression of floral development related genes in barley. This study offers valuable insights into the molecular regulation of barley plant architecture and inflorescence development.

9.
Front Plant Sci ; 14: 1189642, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37235004

RESUMEN

Barley landraces accumulated variation in adapting to extreme highland environments during long-term domestication in Tibet, but little is known about their population structure and genomic selection traces. In this study, tGBS (tunable genotyping by sequencing) sequencing, molecular marker and phenotypic analyses were conducted on 1,308 highland and 58 inland barley landraces in China. The accessions were divided into six sub-populations and clearly distinguished most six-rowed, naked barley accessions (Qingke in Tibet) from inland barley. Genome-wide differentiation was observed in all five sub-populations of Qingke and inland barley accessions. High genetic differentiation in the pericentric regions of chromosomes 2H and 3H contributed to formation of five types of Qingke. Ten haplotypes of the pericentric regions of 2H, 3H, 6H and 7H were further identified as associated with ecological diversification of these sub-populations. There was genetic exchange between eastern and western Qingke but they shared the same progenitor. The identification of 20 inland barley types indicated multiple origins of Qingke in Tibet. The distribution of the five types of Qingke corresponded to specific environments. Two predominant highland-adaptative variations were identified for low temperature tolerance and grain color. Our results provide new insights into the origin, genome differentiation, population structure and highland adaptation in highland barley which will benefit both germplasm enhancement and breeding of naked barley.

10.
Plant Biotechnol J ; 21(6): 1229-1239, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794449

RESUMEN

Wheat fixes CO2 by photosynthesis into kernels to nourish humankind. Improving the photosynthesis rate is a major driving force in assimilating atmospheric CO2 and guaranteeing food supply for human beings. Strategies for achieving the above goal need to be improved. Here, we report the cloning and mechanism of CO2 ASSIMILATION RATE AND KERNEL-ENHANCED 1 (CAKE1) from durum wheat (Triticum turgidum L. var. durum). The cake1 mutant displayed a lower photosynthesis rate with smaller grains. Genetic studies identified CAKE1 as HSP90.2-B, encoding cytosolic molecular chaperone folding nascent preproteins. The disturbance of HSP90.2 decreased leaf photosynthesis rate, kernel weight (KW) and yield. Nevertheless, HSP90.2 over-expression increased KW. HSP90.2 recruited and was essential for the chloroplast localization of nuclear-encoded photosynthesis units, for example PsbO. Actin microfilaments docked on the chloroplast surface interacted with HSP90.2 as a subcellular track towards chloroplasts. A natural variation in the hexaploid wheat HSP90.2-B promoter increased its transcription activity, enhanced photosynthesis rate and improved KW and yield. Our study illustrated an HSP90.2-Actin complex sorting client preproteins towards chloroplasts to promote CO2 assimilation and crop production. The beneficial haplotype of Hsp90.2 is rare in modern varieties and could be an excellent molecular switch promoting photosynthesis rate to increase yield in future elite wheat varieties.


Asunto(s)
Dióxido de Carbono , Triticum , Humanos , Triticum/genética , Fotosíntesis/genética , Hojas de la Planta , Grano Comestible
11.
Theor Appl Genet ; 136(1): 7, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36656367

RESUMEN

KEY MESSAGE: Map-based cloning, subcellular localization, virus-induced-gene-silencing and transcriptomic analysis reveal HvTUB8 as a candidate gene with pleiotropic effects on barley spike and leaf development via ethylene and chlorophyll metabolism. Barley lateral spikelet morphology and grain shape play key roles in grain physical quality and yield. Several genes and QTLs for these traits have been cloned or fine mapped previously. Here, we report the phenotypic and genotypic analysis of a barley mutant with round lateral spikelet (rls) from cv. Edamai 934. rls had round lateral spikelet, short but round grain, shortened awn, thick glume and dark green leaves. Histocytologic and ultrastructural analysis revealed that the difference of grain shape of rls was caused by change of cell arrangement in glume, and the dark leaf color resulted from enlarged chloroplast. HvTUBULIN8 (HvTUB8) was identified as the candidate gene for rls by combination of RNA-Seq, map-based-cloning, virus-induced-gene-silencing (VIGS) and protein subcellular location. A single G-A substitution at the third exon of HvTUB8 resulted in change of Cysteine 354 to tyrosine. Furthermore, the mutant isoform Hvtub8 could be detected in both nucleus and cytoplasm, whereas the wild-type protein was only in cytoplasm and granular organelles of wheat protoplasts. Being consistent with the rare phenotype, the "A" allele of HvTUB8 was only detected in rls, but not in a worldwide barley germplasm panel with 400 accessions. VIGS confirmed that HvTUB8 was essential to maintain spike integrity. RNA-Seq results suggested that HvTUB8 may control spike morphogenesis via ethylene homeostasis and signaling, and control leaf color through chlorophyll metabolism. Collectively, our results support HvTUB8 as a candidate gene for barley spike and leaf morphology and provide insight of a novel mechanism of it in barley development.


Asunto(s)
Hordeum , Sitios de Carácter Cuantitativo , Fenotipo , Grano Comestible/genética , Clonación Molecular , Clorofila
12.
Plant Biotechnol J ; 21(4): 806-818, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36587283

RESUMEN

The green revolution was based on genetic modification of the gibberellin (GA) hormone system with "dwarfing" gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA-related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3-oxidase1 (GA3ox1) as an alternative semi-dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large-scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5-10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9-induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.


Asunto(s)
Giberelinas , Hordeum , Cotiledón , Hordeum/genética , Sistemas CRISPR-Cas/genética , Oxidorreductasas/genética , Alelos , Edición Génica , Plantones/genética
13.
Plant J ; 113(1): 47-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377282

RESUMEN

Blue aleurone of barley is caused by the accumulation of delphinidin-based derivatives. Although these compounds are ideal nutrients for human health, they are undesirable contaminants in malt brewing. Therefore, the ability to add and remove this trait easily would facilitate breeding barley for different purposes. Here we identified a glutathione S-transferase gene (HvGST) that was responsible for the blue aleurone trait in Tibetan qingke barley by performing a genome-wide association study and RNA-sequencing analysis. Gene variation and expression analysis indicated that HvGST also participates in the transport and accumulation of anthocyanin in purple barley. Haplotype and the geographic distribution analyses of HvGST alleles revealed two independent natural variants responsible for the emergence of white aleurone: a 203-bp deletion causing premature termination of translation in qingke barley and two key single nucleotide polymorphisms in the promoter resulting in low transcription in Western barley. This study contributes to a better understanding of mechanisms of colored barley formation, and provides a comprehensive reference for marker-assisted barley breeding.


Asunto(s)
Antocianinas , Hordeum , Antocianinas/metabolismo , Estudio de Asociación del Genoma Completo , Haplotipos , Hordeum/genética , Hordeum/metabolismo , Fitomejoramiento
14.
J Integr Plant Biol ; 65(3): 772-790, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36354146

RESUMEN

Lateral roots play essential roles in drought tolerance in maize (Zea mays L.). However, the genetic basis for the variation in the number of lateral roots in maize remains elusive. Here, we identified a major quantitative trait locus (QTL), qLRT5-1, controlling lateral root number using a recombinant inbred population from a cross between the maize lines Zong3 (with many lateral roots) and 87-1 (with few lateral roots). Fine-mapping and functional analysis determined that the candidate gene for qLRT5-1, ZmLRT, expresses the primary transcript for the microRNA miR166a. ZmLRT was highly expressed in root tips and lateral root primordia, and knockout and overexpression of ZmLRT increased and decreased lateral root number, respectively. Compared with 87-1, the ZmLRT gene model of Zong3 lacked the second and third exons and contained a 14 bp deletion at the junction between the first exon and intron, which altered the splicing site. In addition, ZmLRT expression was significantly lower in Zong3 than in 87-1, which might be attributed to the insertions of a transposon and over large DNA fragments in the Zong3 ZmLRT promoter region. These mutations decreased the abundance of mature miR166a in Zong3, resulting in increased lateral roots at the seedling stage. Furthermore, miR166a post-transcriptionally repressed five development-related class-III homeodomain-leucine zipper genes. Moreover, knockout of ZmLRT enhanced drought tolerance of maize seedlings. Our study furthers our understanding of the genetic basis of lateral root number variation in maize and highlights ZmLRT as a target for improving drought tolerance in maize.


Asunto(s)
Resistencia a la Sequía , MicroARNs , Zea mays/genética , Raíces de Plantas/genética , Plantones/genética , MicroARNs/metabolismo , Clonación Molecular , Sequías
15.
BMC Genomics ; 23(1): 843, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539685

RESUMEN

BACKGROUND: The cis-regulatory element became increasingly important for resistance breeding. There were many DNA variations identified by resequencing. To investigate the links between the DNA variations and cis-regulatory element was the fundamental work. DNA variations in cis-regulatory elements caused phenotype variations in general. RESULTS: We used WGBS, ChIP-seq and RNA-seq technology to decipher the regulatory element landscape from eight hulless barley varieties under four kinds of abiotic stresses. We discovered 231,440 lowly methylated regions (LMRs) from the methylome data of eight varieties. The LMRs mainly distributed in the intergenic regions. A total of 97,909 enhancer-gene pairs were identified from the correlation analysis between methylation degree and expression level. A lot of enriched motifs were recognized from the tolerant-specific LMRs. The key transcription factors were screened out and the transcription factor regulatory network was inferred from the enhancer-gene pairs data for drought stress. The NAC transcription factor was predicted to target to TCP, bHLH, bZIP transcription factor genes. We concluded that the H3K27me3 modification regions overlapped with the LMRs more than the H3K4me3. The variation of single nucleotide polymorphism was more abundant in LMRs than the remain regions of the genome. CONCLUSIONS: Epigenetic regulation is an important mechanism for organisms to adapt to complex environments. Through the study of DNA methylation and histone modification, we found that many changes had taken place in enhancers and transcription factors in the abiotic stress of hulless barley. For example, transcription factors including NAC may play an important role. This enriched the molecular basis of highland barley stress response.


Asunto(s)
Hordeum , Hordeum/genética , Redes Reguladoras de Genes , Epigénesis Genética , Fitomejoramiento , Factores de Transcripción/genética , Metilación de ADN , Estrés Fisiológico/genética
16.
Front Plant Sci ; 13: 1044029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407613

RESUMEN

The Cellulose synthase (CesA) and Cellulose synthase-like (Csl) gene superfamilies encode key enzymes involved in the synthesis of cellulose and hemicellulose, which are major components of plant cell walls, and play important roles in the regulation of fruit ripening. However, genome-wide identification and functional analysis of the CesA and Csl gene families in strawberry remain limited. In this study, eight CesA genes and 25 Csl genes were identified in the genome of diploid woodland strawberry (Fragaria vesca). The protein structures, evolutionary relationships, and cis-acting elements of the promoter for each gene were investigated. Transcriptome analysis and quantitative real-time PCR (qRT-PCR) results showed that the transcript levels of many FveCesA and FveCsl genes were significantly decreased during fruit ripening. Moreover, based on the transcriptome analysis, we found that the expression levels of many FveCesA/Csl genes were changed after nordihydroguaiaretic acid (NDGA) treatment. Transient overexpression of FveCesA4 in immature strawberry fruit increased fruit firmness and reduced fresh fruit weight, thereby delaying ripening. In contrast, transient expression of FveCesA4-RNAi resulted in the opposite phenotypes. These findings provide fundamental information on strawberry CesA and Csl genes and may contribute to the elucidation of the molecular mechanism by which FveCesA/Csl-mediated cell wall synthesis regulates fruit ripening. In addition, these results may be useful in strawberry breeding programs focused on the development of new cultivars with increased fruit shelf-life.

17.
Plants (Basel) ; 11(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36235316

RESUMEN

Underutilized grain crops are an essential part of the food system that supports humankind. A number of these crops can be found in China, such as barley, buckwheat, broomcorn millet, foxtail millet, oat, and sorghum, which have characteristics such as containing more nutritional elements, being resistant to biotic and abiotic stresses, and having strong adaptability to poor environments. The diversity of these crops provides options for farmers' livelihoods and healthy food for the population. Although some mentioned crops such as barley, oat, and sorghum are not underutilized crops globally, they could be considered underutilized in China as they were more important in the past and could be revitalized for food and nutrition in the future. This paper reviews current progress in research and development in the areas of germplasm resource conservation, variety improvement, cultivation technologies, processing, and the nutrition and benefits of six underutilized grain crops in China. It is concluded that underutilized grain crops could play a critical role in food and nutritional security in China.

18.
Front Plant Sci ; 12: 664085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936155

RESUMEN

Implementation of next-generation sequencing in forward genetic screens greatly accelerated gene discovery in species with larger genomes, including many crop plants. In barley, extensive mutant collections are available, however, the causative mutations for many of the genes remains largely unknown. Here we demonstrate how a combination of low-resolution genetic mapping, whole-genome resequencing and comparative functional analyses provides a promising path toward candidate identification of genes involved in plastid biology and/or photosynthesis, even if genes are located in recombination poor regions of the genome. As a proof of concept, we simulated the prediction of a candidate gene for the recently cloned variegation mutant albostrians (HvAST/HvCMF7) and adopted the approach for suggesting HvClpC1 as candidate gene for the yellow-green variegation mutant luteostrians.

19.
Brief Bioinform ; 22(1): 463-473, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-31885040

RESUMEN

Small noncoding RNAs (sRNA/sncRNAs) are generated from different genomic loci and play important roles in biological processes, such as cell proliferation and the regulation of gene expression. Next-generation sequencing (NGS) has provided an unprecedented opportunity to discover and quantify diverse kinds of sncRNA, such as tRFs (tRNA-derived small RNA fragments), phasiRNAs (phased, secondary, small-interfering RNAs), Piwi-interacting RNA (piRNAs) and plant-specific 24-nt short interfering RNAs (siRNAs). However, currently available web-based tools do not provide approaches to comprehensively analyze all of these diverse sncRNAs. This study presents a novel integrated platform, sRNAtools (https://bioinformatics.caf.ac.cn/sRNAtools), that can be used in conjunction with high-throughput sequencing to identify and functionally annotate sncRNAs, including profiling microRNAss, piRNAs, tRNAs, small nuclear RNAs, small nucleolar RNAs and rRNAs and discovering isomiRs, tRFs, phasiRNAs and plant-specific 24-nt siRNAs for up to 21 model organisms. Different modules, including single case, batch case, group case and target case, are developed to provide users with flexible ways of studying sncRNA. In addition, sRNAtools supports different ways of uploading small RNA sequencing data in a very interactive queue system, while local versions based on the program package/Docker/virtureBox are also available. We believe that sRNAtools will greatly benefit the scientific community as an integrated tool for studying sncRNAs.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Pequeño no Traducido/genética , Programas Informáticos , Animales , Bases de Datos Genéticas/normas , Humanos , ARN Pequeño no Traducido/química
20.
Ann Bot ; 127(3): 371-380, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33090200

RESUMEN

BACKGROUND AND AIMS: Oat (Avena sativa) has human health benefits when consumed as a whole-grain food, attributed to the high content of (1,3;1,4)-ß-d-glucan (mixed-linkage glucan [MLG]), but little is known about the synthase genes and synthesis mechanism of MLG polysaccharides in this species. METHODS: The concentration of oat MLGs under different light intensities was measured by a standard enzymatic approach and further verified by immunoelectron microscopy. The effect of light intensity on MLG synthase genes was examined by RT-qPCR and western blot analyses. The pattern of expression directed by the promoter of the oat MLG synthase gene was also investigated by histochemical ß-glucuronidase (GUS) analysis. KEY RESULTS: The oat orthologues of genes implicated in the synthesis of MLG in other cereals, including cellulose synthase-like (Csl) F, H and J gene families, were defined. Transcript profiling of these genes across oat tissues indicated that AsCslF6 transcripts dominated. Under high light intensities, the expression of AsCslF6, a major isoform of the MLG synthase genes, increased to >30 % of the dark growth control. The amount of MLG in oat rose from 0.07 to 1.06 % with increased light intensity. Histochemical tests showed that the AsCslF6 gene promoter preferentially directs GUS expression under high light intensity conditions. CONCLUSIONS: Oat MLG synthesis is regulated by light. High light intensity upregulates the expression of the MLG synthase AsCslF6 gene, leading to an increase in the amount of MLG in oat leaves.


Asunto(s)
Glucanos , beta-Glucanos , Avena/genética , Hojas de la Planta , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...