Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362072

RESUMEN

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Asunto(s)
Antineoplásicos , Flavonas , Animales , Humanos , Masculino , Ratones , Acetilación , Apoptosis , Disponibilidad Biológica , Línea Celular Tumoral , Metaloproteinasa 2 de la Matriz , Ratones Desnudos , Flavonas/química , Flavonas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética
2.
Curr Pharm Biotechnol ; 22(5): 672-681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32634081

RESUMEN

BACKGROUND: Timosaponin A-III is one of the most promising active saponins from Anemarrhena asphodeloides Bge. As an oral chemotherapeutic agent, there is an urgent need to clarify its biopharmaceutics and pharmacokinetics to improve its development potential. OBJECTIVE: This research explores the bioavailability of timosaponin A-III and clarifies its absorption and metabolism mechanisms by a sensitive and specific HPLC-MS/MS method. METHODS: Pharmacokinetics and bioavailability studies of timosaponin A-III were performed in Sprague- Dawley rats by oral (20 mg/kg) and intravenous administration (2 mg/kg). Control group was given the same volume of normal saline. The absorption of timosaponin A-III was investigated in a rat intestinal perfusion model in situ and a Caco-2 cell transport model in vitro. The metabolic rate of timosaponin A-III was determined in a rat liver microsome incubation system. RESULTS: After the oral administration, timosaponin A-III reached Cmax of 120.90 ± 24.97 ng/mL at 8 h, and the t1/2 was 9.94 h. The absolute oral bioavailability of timosaponin A-III was 9.18%. The permeability coefficients of timosaponin A-III in four intestinal segments ranged from 4.98 to 5.42 × 10-7 cm/s, indicating a difficult absorption. A strikingly high efflux transport of timosaponin A-III was found, PappBA 3.27 ± 0.64 × 10-6 cm/s, which was abolished by a P-gp inhibitor. Rat liver microsome incubation studies showed that timosaponin A-III could hardly be metabolized, with a t1/2 of over 12 h. In addition, the solubility test showed a low solubility in PBS solution, i.e. 30.58 µg/mL. CONCLUSION: Timosaponin A-III exhibited low oral bioavailability by oral and intravenous administration, which was probably caused by its low permeability and solubility. This study may provide a reference for its rational clinical use and further study on the pharmacology or toxicology of timosaponin A-III.


Asunto(s)
Antineoplásicos Fitogénicos/farmacocinética , Saponinas/farmacocinética , Esteroides/farmacocinética , Administración Intravenosa , Administración Oral , Anemarrhena/química , Animales , Antineoplásicos Fitogénicos/química , Disponibilidad Biológica , Biofarmacia , Células CACO-2 , Cromatografía Líquida de Alta Presión , Humanos , Técnicas In Vitro , Masculino , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Saponinas/química , Solubilidad , Esteroides/química , Espectrometría de Masas en Tándem
3.
CNS Neurosci Ther ; 26(4): 486-493, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31471952

RESUMEN

AIMS: Phenylketonuria (PKU), which is caused by mutations in the phenylalanine hydroxylase (PAH) gene, is one of the most common inherited diseases of amino acid metabolism. Phenylketonuria is characterized by an abnormal accumulation of phenylalanine and its metabolites in body fluids and brain tissues, subsequently leading to severe brain dysfunction. Various pathophysiological and molecular mechanisms underlying brain dysfunction in PKU have been described. However, the metabolic changes and their impacts on the function of cerebral cortices of patients with PKU remain largely unknown. METHODS: We measured the levels of small molecule metabolites in the cerebrocortical tissues of PKU mice and wild-type control mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolome analysis. Differential metabolites were further subjected to metabolic pathway and enrichment analysis. RESULTS: Metabolome analysis revealed 35 compounds among 143 detected metabolites were significantly changed in PKU mice as compared to those in their wild-type littermates. Metabolic pathway and enrichment analysis of these differential metabolites showed that multiple metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis; valine, leucine, and isoleucine biosynthesis; alanine, aspartate, and glutamate metabolism; purine metabolism; arginine and proline metabolism and methionine metabolism, were impacted in the cerebral cortices of PKU mice. CONCLUSIONS: The data revealed that multiple metabolic pathways in cerebral cortices of PKU mice were disturbed, suggesting that the disturbances of the metabolic pathways might contribute to neurological or neurodevelopmental dysfunction in PKU, which could thus provide new insights into brain pathogenic mechanisms in PKU as well as mechanistic insights for better understanding the complexity of the metabolic mechanisms of the brain dysfunction in PKU.


Asunto(s)
Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenilalanina Hidroxilasa/deficiencia , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA