RESUMEN
Ferroptosis-based therapy has garnered considerable attention for its ability to kill drug-resistant cancer cells. Consequently, it holds great significance to assess the therapeutic outcomes by monitoring ferroptosis-related biomarkers, which enables the provision of real-time pathological insights into disease progression. Nevertheless, conventional imaging technology suffers from limitations including reduced sensitivity and difficulty in achieving real-time precise monitoring. Here, we report a tumor acidic-microenvironment-responsive nanoplatform with "Reverse Magnetic Resonance Tuning (ReMRT)" property and effective combined chemodynamic therapy (CDT) through the loading of chemotherapeutic drugs. This reverse MR mapping change is correlated with iron ion, reactive oxygen species (ROS) generation and drug release, etc., contributing to the precise monitoring of chemo-CDT effectiveness. Furthermore, the ReMRT nanoplatform presents as a highly efficacious combined chemo-CDT agent, and when this nanoplatform is used in conjunction with the "Area Reconstruction" method, it can afford a significant sensitivity (95.1-fold) in multiscale visualization of therapeutic, compared with the conventional MR R1/R2 values. The high-sensitive biological quantitative imaging provides a novel strategy for MR-guided multiscale dynamic tumor-related ferroptosis therapy.
RESUMEN
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
RESUMEN
Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.
Asunto(s)
Derivados de Hidroxietil Almidón , Micelas , Ácido Oleanólico , Oxidación-Reducción , Derivados de Hidroxietil Almidón/química , Ácido Oleanólico/química , Polímeros/química , Liberación de Fármacos , Portadores de Fármacos/química , Humanos , Hemólisis/efectos de los fármacos , Técnicas de Química Sintética , Animales , Tamaño de la PartículaRESUMEN
Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological premature fruit drop (CPFD). Untargeted metabolomics was employed to identify variations in metabolites among different CPFDs, and their antilipidemic effects in vitro were assessed. The results showed that Citrus aurantium L. 'Daidai' physiological premature fruit drop (DDPD) and Citrus aurantium 'Changshan-huyou' physiological premature fruit drop (HYPD) exhibited higher levels of phytochemicals and stronger antioxidant activity. There were 97 differential metabolites identified in DDPD and HYPD, including phenylpropanoids, flavonoids, alkaloids, organic acids, terpenes, and lipids. Additionally, DDPD and HYPD demonstrated potential antilipidemic effects against oleic acid (OA)-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. In conclusion, our findings reveal the outstanding antioxidant activity and antilipidemic effects of CPFD, indicating its potential use as a natural antioxidant and health supplement and promoting the high-value utilization of this resource.
Asunto(s)
Antioxidantes , Citrus , Fenilendiaminas , Antioxidantes/metabolismo , Citrus/metabolismo , Frutas/química , Flavonoides/farmacología , Extractos Vegetales/químicaRESUMEN
BACKGROUND: The association between the common carotid artery (CCA) diameter and cardiovascular disease (CVD) is recognized, but the precise nature of this link remains elusive. This study aimed to investigate the potential relationship between CCA diameter and the risk of CVD mortality in a large population in northeast China. METHODS: The current study included 5668 participants (mean age 58.9 ± 10.1 years) from a population-based study conducted in rural areas of northeast China between September 2017 and May 2018. Information on death was collected from baseline until July 31, 2022. The CCA inter-adventitial diameter was measured using ultrasound. Cox proportional-hazard models were employed to explore the relationship between the common carotid artery diameter and cardiovascular mortality. RESULTS: At baseline, the mean CCA diameter (mm) of subjects was 7.30 ± 0.99 and increased significantly with age, ranging from 6.65 ± 0.71 among people 40-49 years to 7.99 ± 1.04 among people ≥ 80 years. CCA diameter was significantly larger in males compared to females (7.51 ± 1.03 versus vs. 7.16 ± 0.94; P < 0.001). A total of 185 participants died of CVD during a median follow-up of 4.48 years. CCA diameters were divided into quartiles, and the highest quartile of carotid diameter (≥ 8.06 mm) had a 2.29 (95% confidence interval [CI]: 1.24, 4.22) times higher risk of CVD mortality than the lowest quartile (≤ 6.65 mm) (P < 0.01) in the fully adjusted model. Each increase in the diameter of the common carotid artery (per SD) raised the risk of cardiovascular death by 36% (hazard ratio [HR]: 1.36; 95% CI: 1.18, 1.57). The subgroup analysis results demonstrated that a per SD increase was associated with a 42% increased risk of CVD mortality in participants aged ≥ 64 years in the fully adjusted model (HR: 1.42; 95%CI: 1.21, 1.66). CONCLUSIONS: Our study indicates the possible incremental value of CCA diameter in optimizing the risk stratification of cardiovascular disease and provides essential insights into reducing the burden of cardiovascular disease.
Asunto(s)
Enfermedades Cardiovasculares , Femenino , Masculino , Humanos , Persona de Mediana Edad , Anciano , Adulto , Estudios Prospectivos , Arteria Carótida Común/diagnóstico por imagen , China/epidemiologíaRESUMEN
Lemon essential oil (LEO) is a common natural antibacterial substance, and encapsulating LEO into nanoemulsions (NEs) can improve their stability and broaden its application. Our study aimed to investigate the bacterial inhibitory effect of LEO-NEs against Escherichia coli (E. coli). Results showed that the minimum inhibitory concentration (MIC) of LEO-NEs was 6.25 mg/mL, and the time-kill curve showed that E. coli were significantly killed by LEO-NEs after 5 h of treatment at 1MIC. Flow-cytometry analysis showed that LEO-NEs adversely affected the cell-membrane depolarisation, cell-membrane integrity, and efflux pump function of E. coli. Confocal laser scanning microscopy demonstrated that 8MIC of LEO-NEs induced changes in the cell-membrane permeability and cell-wall integrity of E. coli. Proteomic results suggested that the mode of action LEO-NEs against E. coli was to enhance bacterial chemotaxis and significantly inhibit ribosomal assembly. They may also affect butyric acid, ascorbic acid and aldehyde metabolism, and sulphur-relay system pathways. In conclusion, LEO-NEs had potential application as a natural antibacterial agent for the control of E. coli in the food industry.
Asunto(s)
Escherichia coli , Aceites Volátiles , Proteómica , Antibacterianos/farmacología , Aceites Volátiles/farmacología , Membrana Celular , BacteriasRESUMEN
Open-world object detection (OWOD) is an emerging computer vision problem that involves not only the identification of predefined object classes, like what general object detectors do, but also detects new unknown objects simultaneously. Recently, several end-to-end deep learning models have been proposed to address the OWOD problem. However, these approaches face several challenges: a) significant changes in both network architecture and training procedure are required; b) they are trained from scratch, which can not leverage existing pre-trained general detectors; c) costly annotations for all unknown classes are needed. To overcome these challenges, we present a visual analytic framework called OW-Adapter. It acts as an adaptor to enable pre-trained general object detectors to handle the OWOD problem. Specifically, OW-Adapter is designed to identify, summarize, and annotate unknown examples with minimal human effort. Moreover, we introduce a lightweight classifier to learn newly annotated unknown classes and plug the classifier into pre-trained general detectors to detect unknown objects. We demonstrate the effectiveness of our framework through two case studies of different domains, including common object recognition and autonomous driving. The studies show that a simple yet powerful adaptor can extend the capability of pre-trained general detectors to detect unknown objects and improve the performance on known classes simultaneously.
RESUMEN
MR-guided focused ultrasound surgery (MRgFUS) is driving a new direction in non-invasive thermal ablation therapy with spatial specificity and real-time temperature monitoring. Although widely used in clinical practice, it remains challenging to completely ablate the tumor margin due to fear of damaging the surrounding tissues, thus leading to low efficacy and a series of complications. Herein, we have developed novel pH-responsive drug-loading magnetosomes (STPSD nanoplatform) for increasing the T2-contrast and improved the ablation efficiency with a clinical MRgFUS system. Specifically, this STPSD nanoplatform is functionalized by pH-responsive peptides (STP-TPE), encapsulating superparamagnetic iron oxide (SPIO) and doxorubicin (DOX), which can cause drug release and SPIO deposition at the tumor site triggered by acidity and MRgFUS. Under MRgFUS treatment, the increased vascular permeability caused by hyperthermia can improve the uptake of SPIO and DOX by tumor cells, so as to enhance ultrasound energy absorption and further enhance the efficacy of chemotherapy to completely ablate tumor margins. Moreover, we demonstrated that a series of MR sequences including T2-weighted imaging (T2WI), contrast-enhanced T1WI imaging (T1WI C+), maximum intensity projection (MIP), volume rendering (VR) and ADC mapping can be further utilized to monitor the MRgFUS ablation effect in rat models. Overall, this smart nanoplatform has the capacity to be a powerful tool to promote the therapeutic MRgFUS effect and minimize the side effects to surrounding tissues.
RESUMEN
Selective laser melting (SLM) has significant advantages in the near net shape manufacturing of metal parts with complex geometries. However, SLM parts usually have problems such as poor surface quality and low dimensional accuracy, which require post-processing. This paper focuses on the research around the influence of ultra-precision micro-grooving the SLM Ti6Al4V alloy on the cutting force and serrated chips. The influence of the processing parameters on the cutting force and surface processing quality was analyzed in detail, and the cutting simulation model of the SLM Ti6Al4V alloy was established. The formation process of the serrated chip was successfully simulated, and the experiments verified the reliability of the established model. The research results show that the dynamic cutting force and surface processing quality are mainly related to the depth of cut, and the two trends are consistent. It is also shown that the serrated chip begins on the free surface of the workpiece and propagates deeply in the shear zone, forming a shear band, and its serrated nodules move upward and forward to form periodic serrated chips.
RESUMEN
In this study, the anti-obesity mechanism of Ganpu tea (GPT) from the perspectives of microbiome, metabolome and transcriptome was investigated. GPT significantly reduced the high-fat-diet (HFD)-induced levels of inflammatory cytokines and the expansion of lipid droplets and white adipose tissue. GPT also improved HFD-induced gut microbiome imbalance by significantly reducing the proportion of Firmicutes to Bacteroidota. Metabolomic data showed that HFD-induced metabolic disorder was regulated by GPT and probably characterised by being related to 4-aminobutyraldehyde and 5-acetylamino-6-amino-3-methyluracil. Transcriptome showed that the improvement of obesity was mainly related to the IL-17 signaling pathway and the metabolism of xenobiotics by cytochrome P450. Spearman's correlation analysis indicated that gut microbiota were significantly correlated with inflammatory factors, genes and metabolites. Metabolome-transcriptome analysis showed that GPT reversed obesity mainly through the carbohydrate metabolism, amino acid metabolism and lipid metabolism.Collectively, GPT may be used as a health drink to prevent or treat obesity.
Asunto(s)
Microbioma Gastrointestinal , Obesidad , Animales , Ratones , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa , Perfilación de la Expresión Génica , Metaboloma , Microbioma Gastrointestinal/genética , Metabolismo de los Lípidos/genética , Té/química , Ratones Endogámicos C57BLRESUMEN
Escherichia coli (E. coli) is a Gram-negative bacterium and some pathogenic types may cause serious diseases, foods or food environments were the primary routes for its infection. Citrus aurantium L. var. amara Engl., a variety of sour orange, were used as a kind of non-conventional edible plant in China, but its antimicrobial activity and mechanisms were not well studied. Thus, in this study, EO from the flower of Citrus aurantium L. var. amara Engl. (CAEO) were studied as a kind of natural antimicrobial agent to control E. coli, our results showed that both of CAEO and its main component (linalool) exhibited strong antibacterial efficacy. Further, transcriptomic and proteomic analysis were carried out to explore cell response under linalool treatment and the main results included: (1) The synthesis and modification of lipopolysaccharide (LPS) was significantly influenced. (2) Ribosomal assembly and protein synthesis were significantly inhibited. (3) The expression of proteins related to the uptake of several essential substances was significantly changed. In all, our results would supply a theoretical basis for the proper use of CAEO and linalool as a promising antimicrobial agent to prevent and control E. coli infection in the future.
Asunto(s)
Monoterpenos Acíclicos , Escherichia coli , Lipopolisacáridos , Proteínas Portadoras , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteómica , Ribosomas , Monoterpenos Acíclicos/farmacologíaRESUMEN
Intervention with natural products is becoming a promising obesity control strategy as healthy eating becomes increasingly popular. The present study aimed to prepare a citrus-based functional jelly (CFJ) from citrus by-products and investigate its bioactive effects in mice. The results of the CFJ preparation showed that the optimal formula of CFJ was 29.12%, 20%, and 3.61% for chenpi, orange juice, and pectin, respectively. The optimized CFJ can be personalized and designed with jelly shapes using 3D food printing technology. The evaluation of the biological activity of the CFJ showed that it was low in calories, with a total phenolic content of 12.44 ± 0.26 mg GAE/g. Moreover, the CFJ has a good free radical scavenging ability for ABTS. The results of the mouse experiments showed that the CFJ significantly suppressed the body weight gain and fat deposits with a dose-dependent effect, compared with the control group (p < 0.05). In addition, the activities of the antioxidant-related enzymes (CAT and SOD) of the mice were also enhanced after a supplementation with the CFJ. In short, the CFJ is a functional snack enriched in phenolic substances with low-calorie, antioxidant and anti-obesity properties. This work promotes the utilization of citrus by-products and the healthy development of its processing industry.
RESUMEN
A novel colorimetric platform based on nano-composites of two-dimensional (2D) molybdenum disulfide nanosheets (MoS2 NSs) and one-dimensional (1D) carbon nanotubes (CNTs), called 2D-1D MoS2-CNT nanozyme, was fabricated for the selective and sensitive determination of hydrogen peroxide (H2O2) in soda water. The MoS2-CNT nanozyme was synthesized through a one-step solvothermal reduction method. The introduced CNTs could effectively prevent the stacking of MoS2 nanosheets (NSs) and not only expanded the interlayer distance of MoS2 NSs from 0.620 nm to 0.710 nm but also improved their specific surface. Under acidic conditions, the as-prepared 2D-1D MoS2-CNT nanozymes could oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-oxidized TMB (oxTMB) in the presence of H2O2, resulting in enhanced peroxidase-like (POD-like) activity. The kinetic study showed that MoS2-CNT nanozyme had stronger catalytic activity than natural horseradish peroxidase (HRP). The linear range for H2O2 colorimetric determination was 5.00-500 µmol L-1 with a limit of detection (LOD) of 1.40 µmol L-1. Furthermore, the established determination method was applied to actual samples and the recoveries of H2O2 spiked in soda water were in the range of 92.3-107%, showing feasibility for the analysis of food.
RESUMEN
Fish nocardiosis mainly caused by Nocardia seriolae (N. seriolae) is a serious threat to aquaculture. Bacterial adhesion to host cells mediated by adhesin is an initial step of pathogenesis. But it is not clear whether glyceraldehyde-3-phosphate dehydrogenase (GapA) is an adhesin of N. seriolae. Here, recombinant GapA protein (rGapA) was prokaryotic expressed, and its role in the bacterial adhesion to Ctenopharyngodon idella kidney cells was investigated by indirect immunofluorescence, protein-binding assay and adhesion inhibition assay. The results showed that an obvious green fluorescence was observed on the surface of the cells co-incubated with rGapA protein; the cytomembrane proteins of the cells pretreated with rGapA could react with anti-rGapA antibody; and the antibody significantly inhibited the adhesion ability of the bacteria. Subsequently, B-cell linear epitopes of GapA protein were identified by using a immunoinformatics approach combined with peptide ELISA and Western blot for the first time. It was found that four predicted epitopes (Ep58-69 , Ep139-150 , Ep186-197 , Ep318-329 ) could all react with anti-rGapA antibody and obviously inhibit the immunoreactivity between rGapA and anti-rGapA antibody, and they were confirmed as indeed B-cell linear epitopes of the protein. Furthermore, flow cytometry analysis found the percentage of positive cells co-incubated with FITC-labelled epitope peptides (Ep139-150 , Ep186-197 , Ep318-329 ) was significantly higher than those in the FITC-labelled Ep58-69 , unrelated control peptide and cell control. Collectively, GapA is an adhesin of N. seriolae, and epitope peptides (Ep139-150 , Ep186-197 , Ep318-329 ) possess cell-binding activity, which are potential candidates for developing a multiple epitopes-based adhesin vaccine against fish nocardiosis.
Asunto(s)
Carpas , Enfermedades de los Peces , Nocardiosis , Nocardia , Animales , Epítopos de Linfocito B , Fluoresceína-5-Isotiocianato , Enfermedades de los Peces/microbiología , Filogenia , Nocardia/fisiología , Nocardiosis/microbiología , Proteínas RecombinantesRESUMEN
Pancreatic cancer remains one of the most lethal malignancies worldwide. The combination of the first-line standard agent gemcitabine (GEM) with the molecular-targeted drug erlotinib (Er) has emerged as a promising strategy for pancreatic cancer treatment. However, the clinical benefit from this combination is still far from satisfactory due to the unfavorable drug antagonism and the fibrotic tumor microenvironment. Herein, we propose a membrane-camouflaged dual stimuli-responsive delivery system for the co-delivery of GEM and Er into pancreatic cancer cells and tissues to block the antagonism, as well as reshapes profibrotic tumor microenvironment via simultaneous delivery of small interference RNA (siRNA) for synergistic pancreatic cancer treatment. This "all-in-one" delivery system exhibits sensitive GSH and pH-dependent drug release profiles and enhances the inhibitory effects on the proliferation and migration of tumor cells in vitro. Excitingly, the systemic injection of such a biomimetic drug co-delivery system not only resulted in superior inhibitory effects against orthotopic pancreatic tumor and patient-derived tumor (PDX), but also greatly extended the survival rate of tumor-bearing mice. Our findings provide a promising therapeutic strategy against pancreatic cancer through the enhanced synergistic effect of target therapy, chemotherapy and anti-fibrotic therapy, which represents an appealing way for pancreatic cancer treatment.
RESUMEN
Aeromonas hydrophila is one of the important pathogenic bacteria in aquaculture causing serious losses every year. Essential oils are usually used as natural antimicrobial agents to reduce or replace the use of antibiotics. The aim of this study was to evaluate the antibacterial activity and explore the mechanisms of essential oil from satsuma mandarin (Citrus unshiu Marc.) (SMEO) against A. hydrophila. The results of the gas chromatography-mass spectrometer demonstrated that SMEO contains 79 chemical components with the highest proportion of limonene (70.22%). SMEO exhibited strong antibacterial activity against A. hydrophila in vitro, the diameter of the inhibition zone was 31.22 ± 0.46 mm, and the MIC and MBC values were all 1% (v/v). Intracellular material release, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and flow cytometry analysis revealed the dynamic antibacterial process of SMEO, the morphological changes of bacterial cells, and the leakage process of intracellular components. These results demonstrated that SMEO disrupted the extracellular membrane permeability. Our study demonstrated that SEMO has the potential to be used to control and prevent A. hydrophila infections in aquaculture.
RESUMEN
With the growing popularity of the concept of healthy diet, modern obesity treatment is gradually shifting from surgical or pharmacological treatment to nutritional intervention. As a safe and effective measure, natural product interventions are a potential strategy of obesity management. The present study aimed to develop a kind of functional food rich in bioactive compounds (chenpi, kiwifruit, and pectin as raw materials) and investigate their bioactive effects on a mouse model. For development of functional kiwifruit jelly with chenpi (FKJ), the results of single-factor and response surface experiments showed that the optimized formulation was composed of a 30.26% addition of chenpi, 35% addition of kiwifruit juice, and 2.88% addition of pectin. The FKJ obtained with the optimal formulation could be used as a 3D printing raw material to print the desired food shapes successfully. For bioactivity evaluation of FKJ, the results with a mouse model showed that the food intake, liver weight, and adipose tissue weight were significantly decreased after administration of FKJ with dose-dependent effect compared to the CON group (p < 0.05). Meanwhile, the serum levels of several inflammatory factors (TG, IL-6, and TNF-α) were decreased and the activities of several antioxidant-related enzymes (SOD, GSH-PX, and CAT) were increased. In short, a functional kiwifruit jelly with chenpi was developed in this study. It is a functional snack food rich in active phenolic compounds, low in calories, with antioxidant and anti-inflammatory activity, and prevents fat accumulation. FKJ could well meet the needs of modern people for nutrition and health and also promote the processing and utilization of natural products, and has good development prospects in the functional food industry.
RESUMEN
Six lactic acid bacteria strains were used to study the effects on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. All strains exhibited good growth in orange juice. Of these fermentations, some bioactive compositions (e.g., vitamin C, shikimic acid) and aroma-active compounds (e.g., linalool, 3-carene, ethyl 3-hydroxyhexanoate, etc.) significantly increased in Lactiplantibacillus plantarum and Lactobacillus acidophilus samples. DPPH free radical scavenging rates in L. plantarum and Lacticaseibacillus paracasei samples increased to 80.25% and 77.83%, respectively. Forty-three volatile profiles were identified, including 28 aroma-active compounds. 7 key factors significantly influencing sensory flavors of the juices were revealed, including D-limonene, linalool, ethyl butyrate, ethanol, ß-caryophyllene, organic acids and SSC/TA ratio. The orange juice fermented by L. paracasei, with more optimization aroma-active compounds such as D-limonene, ß-caryophyllene, terpinolene and ß-myrcene, exhibited more desirable aroma flavors such as orange-like, green, woody and lilac incense, and gained the highest sensory score. Generally, L. paracasei fermentation presented better aroma flavors and overall acceptability, meanwhile enhancing antioxidant activities.
RESUMEN
Anthropogenic climate change threatens ecosystem functioning. Soil biodiversity is essential for maintaining the health of terrestrial systems, but how climate change affects the richness and abundance of soil microbial communities remains unresolved. We examined the effects of warming, altered precipitation and annual biomass removal on grassland soil bacterial, fungal and protistan communities over 7 years to determine how these representative climate changes impact microbial biodiversity and ecosystem functioning. We show that experimental warming and the concomitant reductions in soil moisture play a predominant role in shaping microbial biodiversity by decreasing the richness of bacteria (9.6%), fungi (14.5%) and protists (7.5%). Our results also show positive associations between microbial biodiversity and ecosystem functional processes, such as gross primary productivity and microbial biomass. We conclude that the detrimental effects of biodiversity loss might be more severe in a warmer world.