Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
J Cancer ; 15(10): 3045-3064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706913

RESUMEN

Gastric cancer is a prevalent malignancy that poses a serious threat to global health. Despite advances in medical technologies, screening methods, and public awareness, gastric cancer remains a significant cause of morbidity and mortality worldwide. Early gastric cancer frequently does not present with characteristic symptoms, while advanced stage disease is characterized by a dismal prognosis. As such, early screening in gastric cancer is of great importance. In recent years, advances have been made globally in both clinical and basic research for the screening of early gastric cancer. The current predominant screening methods for early gastric cancer include imaging screening, endoscopic screening and serum biomarker screening. Imaging screening encompasses upper gastrointestinal barium meal, multidimensional spiral computed tomography (MDCT), Magnetic resonance imaging (MRI), and ultrasonography. Endoscopic screening methods include white light endoscopy, chromoendoscopy, computed virtual chromoendoscopy, and other endoscopic techniques like endocytoscopy, confocal laser endomicroscopy, optical coherence tomography and so on. Biomarkers screening involves the assessment of conventional biomarkers such as CEA, CA19-9 and CA72-4 as well as more emerging biomarkers such as peptides (PG, G-17, GCAA, TAAs and others), DNA (cfDNA, DNA methylation, MSI), noncoding RNA (miRNA, lncRNA, circRNA, and tsRNA) and others. Each screening method has its strengths and limitations. This article systematically summarizes worldwide progress and future development of early gastric cancer screening methods to provide new perspectives and approaches for early diagnostic and treatment advancements in gastric cancer worldwide.

2.
Oncogene ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783100

RESUMEN

It has been demonstrated that tRNA-derived small RNAs (tsRNAs) perform essential functions in the pathophysiology of cancer. In this study, we focused on the possible mechanisms of tRF-33-P4R8YP9LON4VDP (tRF-33) underlying the development of gastric malignancy. In total, 454 tissue samples with different gastric mucosal lesions were collected. The tRF-33 expression level in different cohorts was determined, and its value for diagnostic efficiency and prognosis evaluation were assessed. Cell proliferation assays, Transwell assay, flow cytometry, and xenotransplantation model were used to evaluate its effect on gastric cancer cells. The molecular mechanism was verified by fluorescence in situ hybridization, dual luciferase assay, Western blot, and RNA binding protein immunoprecipitation. The results showed that the expression of tRF-33 exhibited a gradual modification from normal control samples to gastritis tissues, early and latent stage of gastric cancer tissues. Consequently, tRF-33 holds significant potential as a predictive and diagnostic biomarker for gastric malignancy. Over-expression of tRF-33 inhibited gastric cancer cell progression and metastatic viability, and induced cell apoptosis. Tumorigenicity in nude mice showed the suppressive characteristics of tRF-33. Mechanistic investigation revealed that tRF-33 exerted silencing on STAT3 mRNA via binding to AGO2. In conclusion, tRF-33 exhibited values in diagnosing gastric cancer and evaluating its prognosis, and suppressed tumor cell viability by inhibiting STAT3 signaling pathway. The schematic mechanisms underlying tRF-33 regulating gastric cancer occurrence. tRF-33 binds to AGO2 proteins and then negatively regulates STAT3 expression through targeting its 3'UTR. The downregulated expression of STAT3 results in the decrease of STAT3 and p-STAT3 and further blocks the transcription of the downstream genes and finally inhibits the gastric cancer occurrence. MMP-9, matrix metalloproteinase-9; Bcl-2, B-cell lymphoma-2; STAT3, signal transducer and activator of transcription 3; UTR, untranslated region.

3.
Sci Total Environ ; 932: 173135, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734088

RESUMEN

The transboundary mercury (Hg) pollution has caused adverse effects on fragile ecosystems of the Tibetan Plateau (TP). Yet, knowledge of transport paths and source regions of atmospheric Hg on the inland TP remains poor. Continuous measurements of atmospheric total gaseous mercury (TGM) were conducted in the central TP (Tanggula station, 5100 m a.s.l., June-October). Atmospheric TGM level at Tanggula station (1.90 ± 0.30 ng m-3) was higher than the background level in the Northern Hemisphere. The identified high-potential source regions of atmospheric TGM were primarily located in the northern South Asia region. TGM concentrations were lower during the Indian summer monsoon (ISM)-dominant period (1.81 ± 0.25 ng m-3) than those of the westerly-receding period (2.18 ± 0.40 ng m-3) and westerly-intensifying period (1.91 ± 0.26 ng m-3), contrary to the seasonal pattern in southern TP. The distinct TGM minima during the ISM-dominant period indicated lesser importance of ISM-transported Hg to Tanggula station located in the northern boundary of ISM intrusion, compared to stations in proximity to South and Southeast Asia source regions. Instead, from the ISM-dominant period to the westerly-intensifying period, TGM concentrations showed an increasing trend as westerlies intensified, indicating the key role of westerlies in transboundary transport of atmospheric Hg to the inland TP.

4.
DNA Cell Biol ; 43(5): 232-244, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513058

RESUMEN

Numerous studies have shown that circular RNAs are associated with the occurrence and development of various cancers, but the biological functions and mechanisms of hsa_circ_0006847 (circASPHD1) in gastric cancer (GC) remain unclear. The expression of hsa_circ_0006847 in GC cell lines, tissue, and plasma from GC patients was assayed by quantitative real-time reverse transcription-polymerase chain reaction. Hsa_circ_0006847 expression in cells was downregulated or upregulated by transfected small interfering RNA (siRNA) or overexpression plasmid. The role of hsa_circ_0006847 in GC was investigated with Cell Counting Kit-8, EdU, Transwell, flow cytometry assays, and in a subcutaneous xenograft tumor model. In addition, the interaction of eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0006847 was determined with western blot, biotin-labeled RNA pull-down, and RNA immunoprecipitation assays. Co-immunoprecipitation and mass spectrometry were used to validate the combination of EIF4A3 and synaptopodin-2 (SYNPO2). The expression of hsa_circ_0006847 was decreased in GC tissues and cells and indicated poor survival and prognosis. Overexpression of hsa_circ_0006847 inhibited cell proliferation, migration, and invasion. Flow cytometry showed that upregulation of hsa_circ_0006847 resulted in promotion of apoptosis of GC cells and inhibited their progression through the G0/G1 phase. Downregulation of hsa_circ_0006847 expression had the opposite effects. Overexpression of hsa_circ_0006847 in subcutaneous tumor xenografts inhibited tumor growth. Mechanically, hsa_circ_0006847 promoted the binding of EIF4A3 to SYNPO2 by recruiting EIF4A3, which inhibited the growth of GC. The tumor suppressor activity of hsa_circ_0006847, inhibition of the occurrence and development of GC, was mediated by promotion of EIF4A3 and the binding of EIF4A3 to SYNPO2. The results support the study of hsa_circ_0006847 as a novel therapeutic target for the treatment of GC.


Asunto(s)
Proliferación Celular , Factor 4A Eucariótico de Iniciación , Ratones Desnudos , ARN Circular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , ARN Circular/genética , ARN Circular/metabolismo , Animales , Proliferación Celular/genética , Línea Celular Tumoral , Ratones , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Femenino , Masculino , Apoptosis/genética , Ratones Endogámicos BALB C , Persona de Mediana Edad , ARN Helicasas DEAD-box
5.
Dig Dis Sci ; 69(4): 1200-1213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400886

RESUMEN

BACKGROUND: Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM: The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS: CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS: CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION: CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.


Asunto(s)
MicroARNs , ARN Circular , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , MicroARNs/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Interferente Pequeño , Neoplasias Gástricas/patología , Transportadores de Anión Orgánico/genética
6.
Orthop Res Rev ; 16: 21-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292459

RESUMEN

Knee osteoarthritis (KOA) stands as a degenerative ailment with a substantial and escalating prevalence. The practice of traditional Chinese non-pharmacological therapy has become a prevalent complementary and adjunctive approach. A mounting body of evidence suggests its efficacy in addressing KOA. Recent investigations have delved into its underlying mechanism, yielding some headway. Consequently, this comprehensive analysis seeks to encapsulate the clinical application and molecular mechanism of traditional Chinese non-pharmacological therapy in KOA treatment. The review reveals that various therapies, such as acupuncture, electroacupuncture, warm needle acupuncture, tuina, and acupotomy, primarily target localized knee components like cartilage, subchondral bone, and synovium. Moreover, their impact extends to the central nervous system and intestinal flora. More perfect experimental design and more comprehensive research remain a promising avenue in the future.

7.
Environ Pollut ; 342: 123071, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070642

RESUMEN

Mercury (Hg) has received increasing public attention owing to its high toxicity and global distribution capability via long-range atmospheric transportation. Guanzhong Basin (GB) is vital for the industrial and economic development of Shaanxi Province. To determine the concentration, spatial distribution, seasonal variation, sources, and health risks of particulate-bound mercury (PBM), PM2.5 samples were collected at three sampling sites representing urban, rural, and remote areas during winter and summer in GB. The three sampling sites were in Xi'an (XN), Taibai (TB), and the Qinling Mountains (QL). The mean PBM concentrations in XN, TB, and QL in winter were 130 ± 115 pg m-3, 57.5 ± 47.3 pg m-3, and 53.6 ± 38.5 pg m-3, respectively, higher than in summer (13.7 ± 7.11 pg m-3, 8.01 ± 2.86 pg m-3, and 7.75 ± 2.85 pg m-3, respectively). PBM concentrations are affected by precipitation, meteorological conditions (temperature and mixed boundary layer), emission sources, and atmospheric transport. During the sampling period, the PBM dry deposition in XN, TB, and QL was 1.90 µg m-2 (2 months), 0.835 µg m-2 (2 months), and 0.787 µg m-2 (2 months), respectively, lower than the range reported in national megacities. According to backward trajectory and potential source contribution factor (PSCF) analysis, mercury pollution in XN is mainly affected by local pollution source emissions, whereas the polluted air mass in TB and QL originates from local anthropogenic emissions and long-distance atmospheric transmission. The non-carcinogenic health risk values of PBM in XN, TB, and QL in winter and summer were less than 1, indicating that the risk of atmospheric PBM to the health of the residents was negligible.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Mercurio/análisis , Contaminación Ambiental/análisis , Estaciones del Año , Medición de Riesgo , Material Particulado/análisis , China
8.
Sci Total Environ ; 912: 168555, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37979855

RESUMEN

Natural processes and human activities impact mercury (Hg) pollution in rivers. Investigating the individual contributions and interactions of factors affecting variations in Hg concentrations, particularly under climate change, is crucial for safeguarding watershed ecosystems and human health. We collected 381 water samples from China's Weihe River Basin (WRB) during dry and wet seasons to assess the total Hg (THg) concentration. Results revealed high Hg concentrations in the WRB (0.1-2200.9 ng/L, mean 126.2 ± 335.5 ng/L), with higher levels during the wet season (wet season: 249.1 ± 453.5 ng/L, dry season: 12.7 ± 14.0 ng/L), particularly in the mainstream and southern tributaries of the Weihe River. Industrial pollution (contributing 26.2 %) and precipitation (contributing 33.5 %) drove spatial heterogeneity in THg concentrations during the dry and wet seasons, respectively. Notably, combined explanatory power increased to 47.9 % when interaction was considered, highlighting the amplifying effect of climate change, particularly precipitation, on the impact of industrial pollution. The middle and downstream of the Weihe River, especially the Guanzhong urban agglomeration, were identified as high-risk regions for Hg pollution. With ongoing climate change the risk of Hg exposure in the WRB is expected to escalate. This study lays a robust scientific foundation for the effective management of Hg pollution in analogous river systems worldwide.

9.
Environ Int ; 180: 108216, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738696

RESUMEN

Rivers are important sources of Hg for adjacent seas, and seafood from nearshore waters is a major source of Hg exposure for humans. There is thus a key scientific concern regarding how much riverine Hg inputs influence Hg loads in nearshore waters as well as how far the impact range can extend from the river to the open sea. In addition, it is important to understand the influence of anthropogenic hydro-facilities and activities on Hg levels in downstream seas. Because of the concise mass exchange pattern between the seas and the previously demonstrated intensive Hg inputs under anthropogenic regulation from the Yellow River, the Bohai and Yellow Seas, which are key fishery and marine breeding areas for China, are an ideal research area for exploring the impacts of riverine Hg on nearshore and adjacent open seas. Field surveys were conducted in eight major rivers and two seas, and 433 water samples were collected. The main Hg input and output terms (rivers, ocean currents, underground discharge, sewage, coastal erosion, atmospheric deposition, surface evasion, sedimentation, and fisheries) were quantified in the Bohai and Yellow Seas. Owing to the high inputs from the Yellow and Yalu Rivers, elevated THg concentrations were found. Apart from direct MeHg discharge, riverine nutrients may also seemingly affect nearshore MeHg. Using mass balance models, we found that the Yellow River (9.8 t) was the dominant Hg source in the Bohai Sea, which accounted for more than half of all contributions, and the Bohai Sea played the role of a secondary source of Hg to the Yellow Sea, with a flux of 3.3 t. Anthropogenic hydro-activities in large rivers could significantly influence Hg outputs and loads in the nearshore and even open seas. This study provides useful information for water resource management applications to reduce potential MeHg risks.

10.
Exp Biol Med (Maywood) ; 248(13): 1095-1102, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37387464

RESUMEN

Gastric cancer (GC) is a particularly malignant disease; thus, early diagnosis and treatment are especially important. Transfer RNA-derived small RNAs (tsRNAs) have been implicated in the onset and progression of various cancers. Therefore, the aim of this study was to explore the role of tRF-18-79MP9P04 (previously named tRF-5026a) in the onset and progression of GC. Expression levels of tRF-18-79MP9P04 were quantified in gastric mucosa specimens of healthy controls and plasma samples of patients with different stages of GC. The results showed that plasma levels of tRF-18-79MP9P04 were significantly decreased in the early and advanced stages of GC. The results of the nucleocytoplasmic separation assay found that tRF-18-79MP9P04 was localized in the nuclei of GC cells. High-throughput transcriptome sequencing identified genes regulated by tRF-18-79MP9P04 in GC cells, and the function of tRF-18-79MP9P04 was predicted by bioinformatics. Collectively, the findings of this study suggest that tRF-18-79MP9P04 would be useful as non-invasive biomarker for early diagnosis of GC and is related to cornification, the type I interferon signaling pathway, RNA polymerase II activities, and DNA binding.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Biomarcadores
11.
Front Oncol ; 13: 1106997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139153

RESUMEN

Background: The transition from a healthy gastric mucosa to gastric cancer is a multi-step process. Early screening can significantly improve the survival rate of gastric cancer patients. A reliable liquid biopsy for gastric cancer prediction is urgently needed and since tRNA-derived fragments (tRFs) are abundant in various body fluids, tRFs are possible new biomarkers for gastric cancer. Methods: A total of 438 plasma samples from patients with different gastric mucosal lesions as well as healthy individuals were collected. A specific reverse transcription primer, a forward primer, a reverse primer, and a TaqMan probe were designed. A standard curve was constructed and an absolute quantitation method was devised for detection of tRF-33-P4R8YP9LON4VDP in plasma samples of individuals with differing gastric mucosa lesions. Receiver operating characteristic curves were constructed to evaluate the diagnostic values of tRF-33-P4R8YP9LON4VDP for individual with differing gastric mucosa. A Kaplan-Meier curve was established to calculate the prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Finally, a multivariate Cox regression analysis was performed to assess the independent prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Results: A detection method for plasma tRF-33-P4R8YP9LON4VDP was successfully established. Levels of plasma tRF-33-P4R8YP9LON4VDP were shown to reflect a gradient change from healthy individuals to gastritis patients to early and advanced gastric cancer patients. Significant differences were found among individuals with differing gastric mucosa, with reduced levels of tRF-33-P4R8YP9LON4VDP significantly related to a poor prognosis. tRF-33-P4R8YP9LON4VDP was found to be an independent predictor of an unfavorable survival outcome. Conclusions: In this study, we developed a quantitative detection method for plasma tRF-33-P4R8YP9LON4VDP that exhibited hypersensitivity, convenience, and specificity. Detection of tRF-33-P4R8YP9LON4VDP was found to be a valuable means by which to monitor different gastric mucosa and to predict patient prognosis.

12.
Discov Oncol ; 14(1): 60, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154831

RESUMEN

Hepatocellular carcinoma (HCC) is characterized by high morbidity and mortality, and a low 5-year survival rate. Exploring the potential molecular mechanisms, finding diagnostic biomarkers with high sensitivity and specificity, and determining new therapeutic targets for HCC are urgently needed. Circular RNAs (circRNAs) have been found to play a key role in the occurrence and development of HCC, while exosomes play an important role in intercellular communication; thus, the combination of circRNAs and exosomes may have inestimable potential in early diagnosis and curative therapy. Previous studies have shown that exosomes can transfer circRNAs from normal or abnormal cells to surrounding or distant cells; thereafter, circRNAs influence target cells. This review summarizes the recent progress regarding the roles of exosomal circRNAs in the diagnosis, prognosis, occurrence and development and immune checkpoint inhibitor and tyrosine kinase inhibitor resistance of HCC to provide inspiration for further research.

13.
Pathol Oncol Res ; 29: 1611033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065861

RESUMEN

Gastric cancer (GC) is one of the most common malignancies worldwide. Patients with advanced GC need palliative care to ensure survival. This includes the use of chemotherapy agents, such as cisplatin, 5-fluorouracil, oxaliplatin, paclitaxel, and pemetrexed, as well as targeted agents. However, the emergence of drug resistance evidence in poor patient outcomes and poor prognosis is a motivation to determine the specific mechanism of drug resistance. Interestingly, circular RNAs (circRNAs) play an important part in the carcinogenesis and progression of GC and are involved in GC drug resistance. This review systematically summarizes the functions and mechanisms of circRNAs underlying GC drug resistance, especially chemoresistance. It also emphasizes that circRNAs can serve as promising targets for improving drug resistance and therapeutic efficacy.


Asunto(s)
ARN Circular , Neoplasias Gástricas , Humanos , ARN Circular/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Resistencia a Antineoplásicos/genética , Cisplatino/uso terapéutico , Fluorouracilo/uso terapéutico
14.
J Hazard Mater ; 452: 131250, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004441

RESUMEN

Mercury (Hg) released by melting glaciers is likely to bind to suspended particles in meltwater runoff, posing potential risks to downstream ecosystems. The rapidly receding glaciers on the Tibetan Plateau promote the export of total suspended particles (TSP), increasing the uncertainty of Hg export released by glacier melting. To investigate the relationships between TSP and Hg, a multimedia sampling campaign was conducted in July 2020 in the Kuoqionggangri glacier region of the Lhasa River Valley No. 1 glacierized basin located in the inland Tibetan Plateau. Samples from glacier snow/ice, supraglacial rivers, subglacial rivers, proglacial lakes, and meltwater runoff were obtained, and the relationships between TSP and Hg and their transport in glacier meltwater runoff in the context of glacier retreat were explored. The average TSP concentration of different environmental samples ranged from 9.51 mg/L to 399. 27 mg/L, showing significant differences. The average total Hg (THg) concentrations ranged from 0.52 ng/L to 58.81 ng/L and decreased in the order of snow/ice >runoff> subglacial river > proglacial lake > supraglacial river. Both TSP mass concentration and number concentration have an impact on the diurnal variation in meltwater runoff Hg, and the influence of TSP number concentration is stronger than that of concentration. Sites with high TSP concentrations and quantities tended to have higher Hg concentrations, while TSP particle size had no significant effect on Hg concentration or spatial distribution. Our study further divided the glacier recharge basin into the glacier cover zone, the periglacial zone, and the downstream zone and discussed the potential impact of TSP on Hg transport in each zone. Our analysis highlights that the periglacial zone will expand and activate the resuspension process of river sediments in the warming future, which may increase the export of TSP and Hg downstream.

15.
DNA Cell Biol ; 42(3): 176-187, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36867154

RESUMEN

Gastric cancer (GC) is a serious disease with high mortality and poor prognosis. It is known that tRNA halves play key roles in the progression of cancer. This study explored the function of the tRNA half tRF-41-YDLBRY73W0K5KKOVD in GC. Quantitative real-time reverse transcription-polymerase chain reaction was used to measure RNA levels. The level of tRF-41-YDLBRY73W0K5KKOVD in GC cells was regulated by its mimics or inhibitor. Cell proliferation was evaluated by using a Cell Counting Kit-8 and EdU cell proliferation assay. A Transwell assay was used to detect cell migration. Flow cytometry was used to measure cell cycle and apoptosis. The results showed that tRF-41-YDLBRY73W0K5KKOVD expression was decreased in GC cells and tissues. Functionally, overexpression of tRF-41-YDLBRY73W0K5KKOVD inhibited cell proliferation, reduced migration, repressed the cell cycle, and promoted cell apoptosis in GC cells. Based on RNA sequencing results and luciferase reporter assays, 3'-phosphoadenosine-5'-phosphosulfate synthase 2 (PAPSS2) was identified as a target gene of tRF-41-YDLBRY73W0K5KKOVD. These findings indicated that tRF-41-YDLBRY73W0K5KKOVD inhibited GC progression, suggesting that tRF-41-YDLBRY73W0K5KKOVD might be a potential therapeutic target in GC.


Asunto(s)
Biomarcadores de Tumor , Progresión de la Enfermedad , ARN de Transferencia , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , ARN de Transferencia/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proliferación Celular , Recuento de Células , Movimiento Celular , Apoptosis , Complejos Multienzimáticos/genética , Sulfato Adenililtransferasa/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Adulto , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo
16.
Environ Pollut ; 324: 121384, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36868549

RESUMEN

Microbial remediation is vital for improving heavy metal-polluted water. In this work, two bacterial strains, K1 (Acinetobacter gandensis) and K7 (Delftiatsuruhatensis), with high tolerance to and strong oxidation of arsenite [As(III)], were screened from industrial wastewater samples. These strains tolerated 6800 mg/L As(III) in a solid medium and 3000 mg/L (K1) and 2000 mg/L (K7) As(III) in a liquid medium; arsenic (As) pollution was repaired through oxidation and adsorption. The As(III) oxidation rates of K1 and K7 were the highest at 24 h (85.00 ± 0.86%) and 12 h (92.40 ± 0.78%), respectively, and the maximum gene expression levels of As oxidase in these strains were observed at 24 and 12 h. The As(III) adsorption efficiencies of K1 and K7 were 30.70 ± 0.93% and 43.40 ± 1.10% at 24 h, respectively. The strains exchanged and formed a complex with As(III) through the -OH, -CH3, and C]O groups, amide bonds, and carboxyl groups on the cell surfaces. When the two strains were co-immobilized with Chlorella, the adsorption efficiency of As(III) improved (76.46 ± 0.96%) within 180 min, thereby exhibiting good adsorption and removal effects of other heavy metals and pollutants. These results outlined an efficient and environmentally friendly method for the cleaner production of industrial wastewater.


Asunto(s)
Arsénico , Chlorella , Restauración y Remediación Ambiental , Metales Pesados , Contaminantes Químicos del Agua , Arsénico/metabolismo , Aguas Residuales , Chlorella/metabolismo , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , Adsorción , Contaminantes Químicos del Agua/análisis
17.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902440

RESUMEN

To explore the strong tolerance of bacteria to Hg pollution, aquatic Rheinheimera tangshanensis (RTS-4) was separated from industrial sewage, with a maximum Hg(II) tolerant concentration of 120 mg/L and a maximum Hg(II) removal rate of 86.72 ± 2.11%, in 48 h under optimum culture conditions. The Hg(II) bioremediation mechanisms of RTS-4 bacteria are as follows: (1) the reduction of Hg(II) through Hg reductase encoded by the mer operon; (2) the adsorption of Hg(II) through the production of extracellular polymeric substances (EPSs); and (3) the adsorption of Hg(II) using dead bacterial biomass (DBB). At low concentrations [Hg(II) ≤ 10 mg/L], RTS-4 bacteria employed Hg(II) reduction and DBB adsorption to remove Hg(II), and the removal percentages were 54.57 ± 0.36% and 45.43 ± 0.19% of the total removal efficiency, respectively. At moderate concentrations [10 mg/L < Hg(II) ≤ 50 mg/L], all three mechanisms listed above coexisted, with the percentages being 0.26 ± 0.01%, 81.70 ± 2.31%, and 18.04 ± 0.62% of the total removal rate, respectively. At high concentrations [Hg(II) > 50 mg/L], the bacteria primary employed EPS and DBB adsorption to remove Hg(II), where the percentages were 19.09 ± 0.04% and 80.91 ± 2.41% of the total removal rate, respectively. When all three mechanisms coexisted, the reduction of Hg(II) occurred within 8 h, the adsorption of Hg(II) by EPSs and DBB occurred within 8-20 h and after 20 h, respectively. This study provides an efficient and unused bacterium for the biological treatment of Hg pollution.


Asunto(s)
Chromatiaceae , Mercurio , Aguas del Alcantarillado , Oxidorreductasas , Adsorción
18.
Front Oncol ; 13: 1063930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761955

RESUMEN

The heterogeneous species of tRNA-derived fragments (tRFs) with specific biological functions was recently identified. Distinct roles of tRFs in tumor development and viral infection, mediated through transcriptional and post-transcriptional regulation, has been demonstrated. In this review, we briefly summarize the current literatures on the classification of tRFs and the effects of tRNA modification on tRF biogenesis. Moreover, we highlight the tRF repertoire of biological roles such as gene silencing, and regulation of translation, cell apoptosis, and epigenetics. We also summarize the biological roles of various tRFs in cancer development and viral infection, their potential value as diagnostic and prognostic biomarkers for different types of cancers, and their potential use in cancer therapy.

19.
J Clin Lab Anal ; 36(12): e24783, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426933

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are stable molecules with covalently closed structures that have an irreplaceable role in the occurrence, progression, and even treatment of plenty of cancers. Mammalian/mechanistic target of rapamycin (mTOR) is a key regulator in cancers and plays several biological functions, such as proliferation, migration, invasion, autophagy, and apoptosis. METHODS: All data were collected through PubMed and CNKI, using terms including "circRNA," "mTOR," "caner," "signaling pathway," "biomarker," "diagnosis," "treatment." Articles published in Chinese and English were included. RESULTS: In this review, the expression, function, and mechanism of circRNA-associated mTOR in cancers were described. CircRNA-associated-mTOR can regulate the progression and therapy of a variety of cancers in multiple signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mTOR, mitogen-activated protein kinase (MAPK)/mTOR, and AMP-activated protein kinase (AMPK)/mTOR axis. These cancers including esophageal carcinoma (circLPAR3, ciRS-7), gastric cancer (circNRIP1, hsa_circ_0010882, hsa_circ_0000117, hsa_circ_0072309, and circST3GAL6), colorectal cancer (hsa_circ_0000392, hsa_circ_0084927, hsa_circ_0104631, and circFBXW7), liver cancer (circC16orf62, hsa_circ_100338, hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792, hsa_circ_0079299, and hsa_circ_0002130), pancreatic cancer (circ-IARS and circRHOBTB3), renal carcinoma (ciRS-7), bladder cancer (circUBE2K), prostate cancer (circMBOAT2 and circ-ITCH), ovarian cancer (circEEF2, circRAB11FIP1, circMYLK, and circTPCN), endometrial cancer (hsa_circ_0002577 and circWHSC1), lung cancer (circHIPK3, hsa_circ_0001666), thyroid cancer (hsa_circ_0007694 and hsa_circ_0008274), glioma (circGFRA1, circ-MAPK4, circPCMTD1, and hsa_circ_0037251), osteosarcoma (circTCF25), leukemia (circ-PRKDC), and breast cancer (hsa_circ_0000199, circUBAP2, and circWHSC1).


Asunto(s)
Neoplasias Óseas , Neoplasias Renales , MicroARNs , Osteosarcoma , Masculino , Animales , Humanos , ARN Circular/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Osteosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Renales/genética , MicroARNs/genética , Mamíferos/genética , Mamíferos/metabolismo
20.
Heliyon ; 8(11): e11243, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36345519

RESUMEN

The present study was conducted in two Ramsar sites, Lake Rara and Lake Ghodaghodi, of the western Nepal covering pre-monsoon and post-monsoon seasons of 2019 to find out the dynamics of the hydrochemistry. A total of 11 major ions (Na+, K+, Ca2+, Mg2+, NH4 +, F-, Cl-, SO4 2-, NO3 -, NO2 -, HCO3 -) along with six on-site parameters (temperature, pH, electrical conductivity, total dissolved solids, dissolved oxygen, and turbidity) were sampled in replicates from 18 sites in Lake Rara and 13 sites in Lake Ghodaghodi. Major ions were analyzed using ion chromatography including field and procedural blanks to maintain quality standards, whereas on-site parameters were measured by using standard multi-meter probes. The most dominant cation and anions were Ca2+ and HCO3 - in both lakes indicating rock dominance through carbonate weathering as the primary source of dissolved ions in the lake waters. Further analysis indicated that Rara belongs to Ca(Mg)HCO3 and Ghodaghodi belongs to Ca-HCO3 type. The higher concentrations of Na+ and Cl- during the post-monsoon indicates a possibility of long-range marine transport through monsoon precipitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA