Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Biotechnol ; 35(1): 2388704, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39133095

RESUMEN

The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.


Asunto(s)
Carne Roja , Animales , Bovinos/fisiología , Carne Roja/análisis , Crianza de Animales Domésticos/métodos , Músculo Esquelético , Tejido Adiposo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
2.
FASEB J ; 38(14): e23836, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39044640

RESUMEN

Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipocitos , Adipogénesis , Leptina , Transducción de Señal , Animales , Adipogénesis/fisiología , Bovinos , Adipocitos/metabolismo , Adipocitos/citología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Leptina/metabolismo , Leptina/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/citología
3.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38856168

RESUMEN

Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.


Asunto(s)
Biología Computacional , Proteínas de Unión al ADN , Aprendizaje Profundo , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ADN/metabolismo , Biología Computacional/métodos , Redes Neurales de la Computación , Humanos
4.
Br J Pharmacol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862812

RESUMEN

BACKGROUND AND PURPOSE: Drug disposition undergoes significant alteration in patients with inflammatory bowel disease (IBD), yet circadian time-dependency of these changes remains largely unexplored. In this study, we aimed to determine the temporal effects of experimental colitis on drug disposition and toxicity. EXPERIMENTAL APPROACH: RNA-sequencing was used to screen genes relevant to colitis induced by dextran sodium sulfate in mice. Liver microsomes and pharmacokinetic analysis were used to analyze the activity of key enzymes. Dual luciferase assays and chromatin immunoprecipitation (ChIP) were employed to elucidate regulatory mechanisms. KEY RESULTS: RNA sequencing analysis revealed that colitis markedly influenced expression of cytochrome P450 (CYP) enzymes. Specifically, a substantial down-regulation of CYP1A2 and CYP2E1 was observed in livers of mice with colitis at Zeitgeber Time 8 (ZT8), with no significant changes detected at ZT20. At ZT8, the altered expression corresponded to diminished metabolism and enhanced incidence of hepato-cardiac toxicity of theophylline, a substrate specifically metabolized by these enzymes. A combination of assays, integrating liver-specific Bmal1 knockout and targeted activation of BMAL1 showed that dysregulation in CYP1A2 and CYP2E1 during colitis was attributable to perturbed BMAL1 functionality. Luciferase reporter and ChIP assays collectively substantiated the role of BMAL1 in regulating Cyp1a2 and Cyp2e1 transcription through its binding affinity to E-box-like sites. CONCLUSION AND IMPLICATION: Our findings establish a strong link between colitis and chronopharmacology, shedding light on how IBD affects drug disposition and toxicity over time. This research provides a theoretical foundation for optimizing drug dosage in patients with IBD.

5.
Food Chem Toxicol ; 190: 114814, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876379

RESUMEN

Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.


Asunto(s)
Ansiedad , Ácido Clorogénico , Ferroptosis , Plomo , Enfermedades Neuroinflamatorias , Transducción de Señal , Animales , Masculino , Ratones , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/análogos & derivados , Ferroptosis/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Plomo/toxicidad , Ratones Endogámicos ICR , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
J Agric Food Chem ; 72(22): 12641-12654, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780097

RESUMEN

As cellular transcription factors and DNA replicators, nuclear factor I (NFI) family members play an important role in mammalian development. However, there is still a lack of research on the muscle regeneration of NFI family members in cattle. In this study, the analysis of NFI family factors was conducted on their characterization, phylogenetics, and functional domains. We found that NFI family members were relatively conserved among different species, but there was heterogeneity in amino acid sequences, DNA coding sequences, and functional domain among members. Furthermore, among NFI family factors, we observed that NFIC exhibited highly expression in bovine muscle tissues, particularly influencing the expression of proliferation marker genes in myoblasts. To investigate the influence of NFIC on myoblast proliferation, we knocked down NFIC (si-NFIC) and found that the proliferation of myoblasts was significantly promoted. In terms of regulation mechanism, we identified that si-NFIC could counteract the inhibitory effect of the cell cycle inhibitor RO-3306. Interestingly, CENPF, as the downstream target gene of NFIC, could affect the expression of CDK1, CCNB1, and actively regulate the cell cycle pathway and cell proliferation. In addition, when CENPF was knocked down, the phosphorylation of p53 and the expression of Bax were increased, but the expression of Bcl2 was inhibited. Our findings mainly highlight the mechanism by which NFIC acts on the CENPF/CDK1 axis to regulate the proliferation of bovine myoblasts.


Asunto(s)
Proteína Quinasa CDC2 , Proliferación Celular , Mioblastos , Factores de Transcripción NFI , Animales , Bovinos , Mioblastos/metabolismo , Mioblastos/citología , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Técnicas de Silenciamiento del Gen , Ciclo Celular
7.
Anim Biotechnol ; 35(1): 2345238, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38775564

RESUMEN

Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Clonación Molecular , Mioblastos , Tropomiosina , Animales , Bovinos/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Tropomiosina/química , Diferenciación Celular/genética , Mioblastos/metabolismo , Mioblastos/citología , Músculo Esquelético , Secuencia de Aminoácidos , Desarrollo de Músculos/genética
8.
Toxicol Res (Camb) ; 13(3): tfae072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737339

RESUMEN

Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor ß1 (TGF-ß1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-ß1/Smad2/3 pathways.

9.
J Agric Food Chem ; 72(6): 2911-2924, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38303491

RESUMEN

The intramuscular fat (IMF) content of beef determined the meat quality, and the market value of beef varies with different breeds. To provide some new approaches for improving meat quality and cattle breed improvement, 24-month-old Qinchuan cattle (Q, n = 6), Nanyang cattle (N, n = 6), and Japanese black cattle (J, n = 6) were selected. IMF content of the J group (16.92 ± 1.08%) is remarkably higher than that of indigenous Chinese cattle (Q, 13.38 ± 1.08%, and N, 12.35 ± 1.22%). Monounsaturated fatty acids and polyunsaturated fatty acids in the J group are higher than the Q and creatine, lysine, and glutamine are the three most abundant amino acids in beef, which contribute to the flavor formation. Similarly, IMF content-related genes were enriched in four vital KEGG pathways, including fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty acid elongation, and insulin resistance. Moreover, weighted genes coexpression network analysis (WGCNA) revealed that ITGB1 is the critical gene associated with the IMF content. This study compares transcriptome and metabolome of local and high-IMF cattle breeds, providing data for native cattle breeding and improvement of beef quality.


Asunto(s)
Carne , Transcriptoma , Bovinos/genética , Animales , Ácidos Grasos Insaturados/metabolismo , Metaboloma , Músculo Esquelético/metabolismo
10.
Gene ; 908: 148295, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38387707

RESUMEN

Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.


Asunto(s)
Epigenómica , Hipercolesterolemia , Bovinos/genética , Animales , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica , Adipogénesis/genética , Hipercolesterolemia/metabolismo , Epigénesis Genética
11.
Chemosphere ; 346: 140598, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926161

RESUMEN

S(IV)-based systems used for advanced oxidation processes (AOPs) have been constructed for the degradation of organic contaminants via oxysulfur radicals, including SO3•-, SO4•-, and SO5•-. Although SO5•- is proposed as an active species in AOPs processes, research on the reactivity of SO5•- has remained unclear. In this work, 53 target aromatic micropollutants (AMPs), including 13 phenols, 27 amines, and 13 PPCPs were selected to determine the second-order reaction rate constants for SO5•- using the competitive kinetics method, in which the [Formula: see text] values, observed at pH 4 ranged from (2.44 ± 0.00) × 105 M-1 s-1 to (4.41 ± 0.28) × 107 M-1 s-1. Quantitative structure-activity relationship (QSAR) models for the oxidation of AMPs by SO5•- were developed based on 40 [Formula: see text] values of amines and phenols, and their molecular descriptors, using the stepwise multiple linear regression method. This comprehensive model exhibited the excellent goodness-of-fit (Radj2 = 0.802), robustness (QLOO2 = 0.749), and predictability (Qext2 = 0.656), and the one-electron oxidation potential (Eox), energy of the highest occupied molecular orbital energy (EHOMO), and most positive net atomic charge on the carbon atoms (qC+) were considered the most influential descriptors for the comprehensive model, indicating that SO5•- oxidizes pollutants via single electron transfer reaction and exhibits a strong oxidation capacity, especially for pollutants containing electron-donating groups. Moreover, the [Formula: see text] values of 13 PPCPs were predicted using this comprehensive model, which suggested the practical application significance of the QSAR model. This study emphasizes the direct oxidation capacity of SO5•-, which is important to evaluate and simulate AOPs based on S(IV).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Relación Estructura-Actividad Cuantitativa , Agua , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Aminas , Purificación del Agua/métodos , Fenoles/análisis
12.
Animals (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38066979

RESUMEN

A genome-wide association study (GWAS) is an effective tool for identifying the dominant genes of complex economic traits in livestock by statistical analysis of genotype data and measured phenotype data. In this study, we rigorously measured 14 body conformation traits in 254 Qinchuan cattle, comprising body weight (BW), body height (BOH), back height (BAH), buttock height (BUH), chest depth (CD), chest width (CW), hip cross height (HCH), body length (BL), hip width (HW), rump length (RL), pin bone width (PBW), chest girth (CG), abdomen circumference (AG), and calf circumference (CC). After quality control, 281,889 SNPs were generated for GWAS with different traits. A total of 250 suggestive SNPs (p < 3.54 × 10-6) were screened and 37 candidate genes were annotated. Furthermore, we performed a linkage disequilibrium analysis of SNP loci and considered published studies, identifying the eight genes (ADAMTS17, ALDH1A3, CHSY1, MAGEL2, MEF2A, SYNM, CNTNAP5, and CTNNA3) most likely to be involved in growth traits. This study provides new insights into the regulatory mechanisms of bovine body size development, which can be very useful in the development of management and breeding strategies.

13.
Proteins ; 91(8): 1077-1088, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978156

RESUMEN

Computational modeling of protein-DNA complex structures has important implications in biomedical applications such as structure-based, computer aided drug design. A key step in developing methods for accurate modeling of protein-DNA complexes is similarity assessment between models and their reference complex structures. Existing methods primarily rely on distance-based metrics and generally do not consider important functional features of the complexes, such as interface hydrogen bonds that are critical to specific protein-DNA interactions. Here, we present a new scoring function, ComparePD, which takes interface hydrogen bond energy and strength into account besides the distance-based metrics for accurate similarity measure of protein-DNA complexes. ComparePD was tested on two datasets of computational models of protein-DNA complexes generated using docking (classified as easy, intermediate, and difficult cases) and homology modeling methods. The results were compared with PDDockQ, a modified version of DockQ tailored for protein-DNA complexes, as well as the metrics employed by the community-wide experiment CAPRI (Critical Assessment of PRedicted Interactions). We demonstrated that ComparePD provides an improved similarity measure over PDDockQ and the CAPRI classification method by considering both conformational similarity and functional importance of the complex interface. ComparePD identified more meaningful models as compared to PDDockQ for all the cases having different top models between ComparePD and PDDockQ except for one intermediate docking case.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Unión Proteica , Conformación Proteica , Enlace de Hidrógeno , Benchmarking , Algoritmos , Biología Computacional/métodos , Programas Informáticos , Simulación del Acoplamiento Molecular
14.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677664

RESUMEN

Pyrite has been used in photo-Fenton reactions for the degradation of pollutants, but the application of photo-Fenton processes with extra H2O2 in real water/wastewater treatment has still been limited by the economic cost of H2O2 and artificial light sources. Herein, citric acid (CA) and simulated/natural sunlight are used to develop a pyrite-based photo-Fenton system (pyrite-CA-light) in situ generating H2O2 through the enhanced activation of molecular oxygen. The degradation of pharmaceuticals and personal care products (PPCPs), especially acetaminophen (APAP) as the main target pollutant, in the pyrite-CA-light system was investigated. The effects of influencing factors such as various organic acids, APAP concentration, pH, pyrite dosage, CA concentration and co-existing anions (HCO3-, Cl-, NO3-, SO42- and H2PO4-) were examined. At a pyrite dosage of 0.1 g L-1, CA concentration of 0.6 mM and an initial pH of 6.0, the degradation efficiency of APAP (30 µM) was 99.1% within 30 min under the irradiation of xenon lamp (70 W, λ ≥ 350 nm). Almost the same high efficiency of APAP degradation (93.9%) in the system was achieved under natural sunlight irradiation (ca. 650 W m-2). The scavenging experiments revealed that the dominant active species for degrading APAP was hydroxyl radical (HO•). Moreover, a quantitative structural-activity relationship (QSAR) model for pseudo-first-order rate constants (kobs) was established with a high significance (R2 = 0.932, p = 0.001) by using three descriptors: octanol-water partition coefficient (logKow), dissociation constant (pKa) and highest occupied molecular orbital (HOMO). This work provides an innovative strategy of the photo-Fenton process for the degradation of PPCPs using natural minerals and ordinary carboxylic acid under sunlight.

15.
Water Res ; 227: 119344, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402098

RESUMEN

Surface complexation between arsenite (As(III)) and colloidal metal hydroxides plays an important role not only in the immobilization and oxidation of As(III) but also in the cycle of the metal and the fate of their ligands. However, the photochemical processes between Cu(II) and As(III) are not sufficiently understood. In this work, the photooxidation of As(III) in the presence of Cu(II) under neutral pH conditions was investigated in water containing 200 µM Cu(II) and 5 µM As(III) under simulated solar irradiation consisting of UVB light. The results confirmed the complexation between As(III) and Cu(II) hydroxides, and the photooxidation of As(III) is attributed to the ligand-to-metal charge transfer (LMCT) process and Cu(III) oxidation. The light-induced LMCT process results in simultaneous As(III) oxidation and Cu(II) reduction, then produced Cu(I) undergoes autooxidation with O2 to produce O2•⁻ and H2O2, and further the Cu(I)-Fenton reaction produces Cu(III) that can oxidize As(III) efficiently (kCu(III)+As(III) = 1.02 × 109 M-1 s-1). The contributions from each pathway (ρrCu(II)-As(III)+hv = 0.62, ρrCu(III)+As(III) = 0.38) were obtained using kinetic analysis and simulation. Sunlight experiments showed that the pH range of As(III) oxidation could be extended to weak acidic conditions in downstream water from acid mine drainage (AMD). This work helps to understand the environmental chemistry of Cu(II) and As(III) regarding their interaction and photo-induced redox reactions.


Asunto(s)
Peróxido de Hidrógeno , Metales , Cinética , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Agua
16.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432145

RESUMEN

The adsorption of antibiotics on minerals is an important process in their environment behavior. The adsorption behavior of antibiotics on iron-containing minerals and the effect of co-existing cations and anions were studied in this work. Magnetite, hematite, goethite and kaolin were selected as the representative minerals and characterized by SEM, XRD and BET. A total of eight antibiotics, including three quinolones, three sulfonamides and two mycins were chosen as the research targets. Results showed a higher adsorption amount of quinolones than that of sulfonamides and mycins on the surface of iron-containing minerals in most mineral systems. The adsorption isotherms of quinolones can be well fitted using the Freundlich models. The effects of five cations and five anions on the adsorption of quinolones were investigated, among which Mg2+, Ca2+, HCO3- and H2PO4- mainly showed significant inhibition on the adsorption, while the effects of K+, Na+, NH4+, Cl-, NO3- and SO42- showed less. Natural surface water samples were also collected and used as media to investigate the adsorption behavior of quinolones on iron-containing minerals. The buffering capacity of the natural water kept the reaction solution at circumneutral conditions, and the adsorption amount was mostly promoted in the goethite system (from 0.56~0.78 µmol/g to 0.52~1.43 µmol/g), but was inhibited in the other systems (magnetite: from 1.13~1.33 µmol/g to 0.45~0.76 µmol/g; hematite: from 0.52~0.65 µmol/g to 0.02~0.18 µmol/g; kaolin: from 1.98~1.99 µmol/g to 0.90~1.40 µmol/g). The results in this work help to further understand the transportation and fate of antibiotics in an aqueous environment.


Asunto(s)
Hierro , Quinolonas , Adsorción , Antibacterianos/farmacología , Óxido Ferrosoférrico , Caolín , Minerales , Cationes , Agua , Sulfonamidas
17.
Biomolecules ; 12(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36139026

RESUMEN

Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB-ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).


Asunto(s)
ADN de Cadena Simple , Proteínas de Unión al ADN , ADN/química , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Aprendizaje Automático , Unión Proteica
18.
Epidemiol Health ; 44: e2022045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35538695

RESUMEN

OBJECTIVES: Tuberculosis (TB) treatment outcomes are a key indicator in the assessment of TB control programs. We aimed to identify spatial factors associated with TB treatment outcomes, and to provide additional insights into TB control from a geographical perspective. METHODS: We collected data from the electronic TB surveillance system in Shanghai, China and included pulmonary TB patients registered from January 1, 2009 to December 31, 2016. We examined the associations of physical accessibility to hospitals, an autoregression term, and random hospital effects with treatment outcomes in logistic regression models after adjusting for demographic, clinical, and treatment factors. RESULTS: Of the 53,475 pulmonary TB patients, 49,002 (91.6%) had successful treatment outcomes. The success rate increased from 89.3% in 2009 to 94.4% in 2016. The successful treatment outcome rate varied among hospitals from 78.6% to 97.8%, and there were 12 spatial clusters of poor treatment outcomes during the 8-year study period. The best-fit model incorporated spatial factors. Both the random hospital effects and autoregression terms had significant impacts on TB treatment outcomes, ranking 6th and 10th, respectively, in terms of statistical importance among 14 factors. The number of bus stations around the home was the least important variable in the model. CONCLUSIONS: Spatial autocorrelation and hospital effects were associated with TB treatment outcomes in Shanghai. In highly-integrated cities like Shanghai, physical accessibility was not related to treatment outcomes. Governments need to pay more attention to the mobility of patients and different success rates of treatment among hospitals.


Asunto(s)
Tuberculosis Pulmonar , Tuberculosis , China/epidemiología , Humanos , Análisis Espacial , Resultado del Tratamiento , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis/prevención & control , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/epidemiología
19.
Proteins ; 90(6): 1303-1314, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122321

RESUMEN

Hydrogen bonds play important roles in protein folding and protein-ligand interactions, particularly in specific protein-DNA recognition. However, the distributions of hydrogen bonds, especially hydrogen bond energy (HBE) in different types of protein-ligand complexes, is unknown. Here we performed a comparative analysis of hydrogen bonds among three non-redundant datasets of protein-protein, protein-peptide, and protein-DNA complexes. Besides comparing the number of hydrogen bonds in terms of types and locations, we investigated the distributions of HBE. Our results indicate that while there is no significant difference of hydrogen bonds within protein chains among the three types of complexes, interfacial hydrogen bonds are significantly more prevalent in protein-DNA complexes. More importantly, the interfacial hydrogen bonds in protein-DNA complexes displayed a unique energy distribution of strong and weak hydrogen bonds whereas majority of the interfacial hydrogen bonds in protein-protein and protein-peptide complexes are of predominantly high strength with low energy. Moreover, there is a significant difference in the energy distributions of minor groove hydrogen bonds between protein-DNA complexes with different binding specificity. Highly specific protein-DNA complexes contain more strong hydrogen bonds in the minor groove than multi-specific complexes, suggesting important role of minor groove in specific protein-DNA recognition. These results can help better understand protein-DNA interactions and have important implications in improving quality assessments of protein-DNA complex models.


Asunto(s)
ADN , Proteínas , ADN/química , Enlace de Hidrógeno , Ligandos , Proteínas/química
20.
Genomics ; 114(2): 110316, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202721

RESUMEN

The problem of human hair loss has caused widespread concern, however, such research is difficult because the periodicity is not obvious and the deeper levels knowledge of dermal papilla (DP) stem cells' differentiation are limited. Here, cashmere goats which have obvious periodicity of hair follicles were used, based on unbiased scRNA sequencing, we constructed DP cell lineage differentiation trajectory and revealed the key genes, signals and functions involved in cell fate decisions. And then we revealed the molecular landscape of hair follicle on regeneration. Revealed that DP cells differentiate into four intermediate cell states at different periodicity: Intermediate-cell-10 showed important functions in the growth and maintenance of cashmere; intermediate-cell-1 acting on apoptosis and cashmere shedding; intermediate-cell-0 initiated new follicular cycles, the migration of hair follicles and the occurrence of cashmere; and intermediate-cell-15 are suggested to be DP progenitor cells. In general, we provide new insights for hair regrowth. At the same time, it provides a new research ideas, directions and molecular landscape for the mechanism of dermal papilla cells.


Asunto(s)
Cabras , Folículo Piloso , Animales , Diferenciación Celular/genética , Cabras/genética , Cabras/metabolismo , Cabello , Regeneración/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...