Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.180
Filtrar
1.
Front Pharmacol ; 15: 1390294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720773

RESUMEN

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

2.
Asian J Surg ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38724372

RESUMEN

BACKGROUND AND AIMS: The prognosis of patients with hepatocellular carcinoma (HCC) undergoing hepatectomy is unsatisfactory, especially for those with microvascular invasion (MVI). This study aimed to determine the impact of adjuvant transcatheter arterial chemoembolization (TACE) and Lenvatinib on the prognosis of patients with HCC and MVI after hepatectomy. METHODS: Patients diagnosed with HCC and MVI were reviewed, and stratified into four groups according to adjuvant TACE and/or Lenvatinib. Multivariate Cox regression analyses are used to determine independent risk factors. RESULTS: 346 patients were included, and divided into four groups (Group I, TACE+ Lenvatinib; Group II, Lenvatinib; Group III, TACE; Group IV, without adjuvant therapy). Multivariable analysis showed that compared to Group IV, Group I had the best effect on improving the overall survival (OS, HR 0.321, 95%CI 0.099-0.406, P = 0.001) and recurrence-free survival (RFS, HR 0.319, 95%CI 0.129-0.372, P = 0.001). Additionally, compared with Group II or Group III, Group I also can significantly improve the OS and RFS. There is no significant difference between Group II and Group III in OS and RFS. CONCLUSION: The combination of TACE and Lenvatinib should be considered for anti-recurrence therapy for patients with HCC and MVI after hepatectomy.

3.
New Phytol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730437

RESUMEN

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.

4.
Small Methods ; : e2400432, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767183

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.

5.
Inorg Chem ; 63(19): 8822-8831, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696545

RESUMEN

This study presents the rare examples of S-heteroaryl tetradentate Pt(S^C^N^O) luminescent complexes (PtSZ and PtSZtBu) containing a Pt-S bond. The presence of the Pt-S bond allows the novel Pt(S^C^N^O) complexes to exhibit temperature-dependent phosphorescent emission behavior. The PtSZtBu exhibits dual-emission phenomena and biexponential transient decay spectra above 250 K, indicating the presence of two minimal excited states in the potential energy surface (PES) of the T1 state. Through complementary experimental and computational studies, we have identified changes in orbital composition between Pt(dxy)-S(px) and Pt(dyz)-S(pz) in excited states with increasing temperature. This results in two energy minima, enabling the excited states to decay selectively and radiatively at different temperatures. Consequently, this leads to remarkable steady-state and transient emission spectra changes. Our work not only provides valuable insights for the development of novel Pt-S bond-based tetradentate Pt(II) complexes but also enhances our understanding of the distinctive properties governed by the Pt-S bond.

6.
J Mater Chem B ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775046

RESUMEN

The development of a simple, rapid, and sensitive technology for the simultaneous detection of mycotoxins is of great significance in ensuring the safety of foods and drugs. Herein, a fluorescence aptasensor with high sensitivity and reproducibility for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was developed. In this sensing system, AFB1 and OTA aptamers were co-immobilized on the surface of magnetic beads (MBs) to form a Y-shaped structure through the principle of complementary base pairing, and were used as recognition probes to specifically capture the target. Activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) was used as a signal amplification strategy to improve the sensitivity. The initiator modified at the end of an antibody initiates the ARGET ATRP reaction. Different fluorescence signals were designed to achieve the simultaneous detection of OTA and AFB1 with limits of 426.18 and 79.55 fg mL-1 for AFB1 and OTA, respectively. In addition, experiments were conducted on three types of samples, and the recoveries of the two mycotoxins ranged from 87.30% to 109.50%, with relative standard deviations ranging from 0.50% to 4.92% under reproducible conditions. The results suggest that the developed aptasensor is sufficient to meet the different regulatory requirements of the two mycotoxins in food and drug safety and shows great potential.

7.
BMC Genomics ; 25(1): 431, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693480

RESUMEN

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Asunto(s)
COVID-19 , Edición de ARN , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Ojo/metabolismo , Ojo/virología
8.
Chin J Traumatol ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38762419

RESUMEN

PURPOSE: To methodically assess the effectiveness of augmentative plating (AP) and exchange nailing (EN) in managing nonunion following intramedullary nailing for long bone fractures of the lower extremity. METHODS: PubMed, EMBASE, Web of Science, and the Cochrane Library were searched to gather clinical studies regarding the use of AP and EN techniques in the treatment of nonunion following intramedullary nailing of lower extremity long bones. The search was conducted up until May 2023. The original studies underwent an independent assessment of their quality, a process conducted utilizing the Newcastle-Ottawa scale. Data were retrieved from these studies, and meta-analysis was executed utilizing Review Manager 5.3. RESULTS: This meta-analysis included 8 studies involving 661 participants, with 305 in the AP group and 356 in the EN group. The results of the meta-analysis demonstrated that the AP group exhibited a higher rate of union (odds ratio: 8.61, 95% confidence intervals (CI): 4.12 - 17.99, p < 0.001), shorter union time (standardized mean difference (SMD): -1.08, 95 % CI: -1.79 - -0.37, p = 0.003), reduced duration of the surgical procedure (SMD: -0.56, 95 % CI: -0.93 - -0.19, p = 0.003), less bleeding (SMD: -1.5, 95 % CI: -2.81 - -0.18), p = 0.03), and a lower incidence of complications (relative risk: -0.17, 95 % CI: -0.27 - -0.06, p = 0.001). In the subgroup analysis, the time for union in the AP group in nonisthmal and isthmal nonunion of lower extremity long bones was shorter compared to the EN group (nonisthmal SMD: -1.94, 95 % CI: -3.28 - -0.61, p < 0.001; isthmal SMD: -1.08, 95 % CI: -1.64 - -0.52, p = 0.002). CONCLUSION: In the treatment of nonunion in diaphyseal fractures of the long bones in the lower extremity, the AP approach is superior to EN, both intraoperatively (with reduced duration of the surgical procedure and diminished blood loss) and postoperatively (with an elevated union rate, shorter union time, and lower incidence of complications). Specifically, in the management of nonunion of lower extremity long bones with non-isthmal and isthmal intramedullary nails, AP demonstrated shorter union time in comparison to EN.

9.
Cells ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727294

RESUMEN

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Asunto(s)
Conducta Animal , Mitocondrias , Oocitos , Estrés Oxidativo , Animales , Oocitos/metabolismo , Mitocondrias/metabolismo , Femenino , Ratones , Masculino , Ovulación , Ansiedad/metabolismo , Ansiedad/patología , Antioxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Blastocisto/metabolismo , Senescencia Celular , Memoria
10.
Eur J Ophthalmol ; : 11206721241252476, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693770

RESUMEN

PURPOSES: To investigate the features of the anterior segment structures in neovascular glaucoma (NVG) and analyze its differences from primary angle-closure glaucoma (PACG). METHODS: This study included patients who were first diagnosed with monocular NVG and PACG at the Affiliated Eye Hospital of Nanchang University during August 2019 to June 2022. Ultrasound biomicroscopy (UBM) was used to measure the anterior segment parameters of those eyes, including anterior chamber depth (ACD), anterior chamber width (ACW), anterior chamber area (ACA), iris area (IA), maximum iris thickness (ITMAX), middle iris thickness (ITMID), iris curvature (IC), lens vault (LV), angle opening distance (AOD500), trabecular iris angle (TIA500), trabecular-iris space area (TISA500) and peripheral anterior synechia (PAS) length. RESULTS: In this study, paired samples t-test showed that IA [1.170(0.324) mm2], ITMAX [0.368(0.079) mm], ITMID [0.280(0.062) mm] and IC [0.147(0.037) mm] of NVG were smaller than F-NVG [2.058(0.195) mm2, 0.611(0.045) mm, 0.415(0.049) mm and 0.272(0.077) mm], the AOD500, TIA500, and TISA500 of NVG were also smaller than F-NVG. Independent samples t-test showed that ACD [2.349(0.350) mm] and ACA [16.326(3.547) mm2] of NVG were larger than PACG [1.971(0.240) mm, 12.030(1.860) mm2], but the IA [1.170(0.324) mm2], ITMAX [0.368(0.079) mm], ITMID [0.280(0.062) mm], IC [0.147(0.037) mm] and LV [0.436(0.172 mm)] were smaller than PACG [1.740(0.294) mm2, 0.548(0.084) mm, 0.404(0.065) mm, 0.283(0.060) mm and 0.737(0.196) mm]. Among the 16 patients with 360° angle-closure NVG, the PAS length was 0.834 (0.326) mm, which exceeded the Schwalbe line. CONCLUSION: In NVG, the iris is atrophied, thinned, and straight, while the ACD is normal or slightly shallow. In 360° angle-closure NVG, the PAS length exceeds the Schwalbe line, presenting a pseudo angle phenomenon and a hockey stick sign. Notably, the anterior segment structure morphology of NVG exhibit differences from those of PACG.

11.
Bioact Mater ; 38: 292-304, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38745591

RESUMEN

Delays in infected wound healing are usually a result of bacterial infection and local inflammation, which imposes a significant and often underappreciated burden on patients and society. Current therapies for chronic wound infection generally suffer from limited drug permeability and frequent drug administration, owing to the existence of a wound biofilm that acts as a barrier restricting the entry of various antibacterial drugs. Here, we report the design of a biocompatible probiotic-based microneedle (MN) patch that can rapidly deliver beneficial bacteria to wound tissues with improved delivery efficiency. The probiotic is capable of continuously producing antimicrobial substances by metabolizing introduced glycerol, thereby facilitating infected wound healing through long-acting antibacterial and anti-inflammatory effects. Additionally, the beneficial bacteria can remain highly viable (>80 %) inside MNs for as long as 60 days at 4 °C. In a mouse model of Staphylococcus aureus-infected wounds, a single administration of the MN patch exhibited superior antimicrobial efficiency and wound healing performance in comparison with the control groups, indicating great potential for accelerating infected wound closure. Further development of live probiotic-based MN patches may enable patients to better manage chronically infected wounds.

12.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745965

RESUMEN

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

13.
Front Cell Dev Biol ; 12: 1357370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577504

RESUMEN

As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.

14.
Dev Cell ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38640925

RESUMEN

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.

15.
Front Plant Sci ; 15: 1374925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606078

RESUMEN

Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.

16.
Cells ; 13(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38607002

RESUMEN

(1) Background: Spermatozoa acquired motility and matured in epididymis after production in the testis. However, there is still limited understanding of the specific characteristics of sperm development across different species. In this study, we employed a comprehensive approach to analyze cell compositions in both testicular and epididymal tissues, providing valuable insights into the changes occurring during meiosis and spermiogenesis in mouse and pig models. Additionally, we identified distinct gene expression signatures associated with various spermatogenic cell types. (2) Methods: To investigate the differences in spermatogenesis between mice and pigs, we constructed a single-cell RNA dataset. (3) Results: Our findings revealed notable differences in testicular cell clusters between these two species. Furthermore, distinct gene expression patterns were observed among epithelial cells from different regions of the epididymis. Interestingly, regional gene expression patterns were also identified within principal cell clusters of the mouse epididymis. Moreover, through analysing differentially expressed genes related to the epididymis in both mouse and pig models, we successfully identified potential marker genes associated with sperm development and maturation for each species studied. (4) Conclusions: This research presented a comprehensive single-cell landscape analysis of both testicular and epididymal tissues, shedding light on the intricate processes involved in spermatogenesis and sperm maturation, specifically within mouse and pig models.


Asunto(s)
Semen , Testículo , Ratones , Masculino , Animales , Porcinos , Testículo/metabolismo , Espermatozoides/metabolismo , Epidídimo/metabolismo , Espermatogénesis/genética
17.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612417

RESUMEN

Diabetic nephropathy (DN) is a serious complication of diabetes, and its progression is influenced by factors like oxidative stress, inflammation, cell death, and fibrosis. Compared to drug treatment, exercise offers a cost-effective and low-risk approach to slowing down DN progression. Through multiple ways and mechanisms, exercise helps to control blood sugar and blood pressure and reduce serum creatinine and albuminuria, thereby alleviating kidney damage. This review explores the beneficial effects of exercise on DN improvement and highlights its potential mechanisms for ameliorating DN. In-depth understanding of the role and mechanism of exercise in improving DN would pave the way for formulating safe and effective exercise programs for the treatment and prevention of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/prevención & control , Albuminuria , Glucemia , Presión Sanguínea , Muerte Celular
18.
Sci Total Environ ; 927: 172229, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582115

RESUMEN

Combining traditional stable isotopes (δD and δ18O) and triple oxygen isotope (δ17O) is conducive to tracing hydrological cycle processes. The application of triple oxygen isotopes primarily focuses on precipitation, which is lacking in river water and groundwater. In this study, the spatial variations of δD, δ18O, δ17O, d-excess and 17O-excess of river water and groundwater in the Golmud River basin as well as the correlation between them were investigated to elucidate water origin and assess the evaporation influence on water bodies during flood season. Spatial changes in δD, δ18O and δ17O of river water exhibit a decrease-increase-stability pattern contrary to that observed for d-excess, 17O-excess has no distinct trend but is higher at both the source and downstream regions. The results show that river water and groundwater originate from precipitation in the mountainous area, and the meltwater in the source region also contribute to the river water with high d-excess and 17O-excess during flood season. The combination of d-excess and 17O-excess reveal that river water is also affected by evaporation and mixing of river water in tributaries. It was found that the river water is recharged in the mountains, undergoes evaporation in the upstream region and leaks into groundwater in the midstream region, which is recharged by the groundwater and evaporated again in the downstream region. This study could provide a more comprehensive understanding of the potential and value of triple oxygen isotopes in the hydrological cycle.

19.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642759

RESUMEN

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Asunto(s)
Carbón Orgánico , Compostaje , Sustancias Húmicas , Nitrógeno , Fósforo , Fósforo/análisis , Carbón Orgánico/química , Nitrógeno/análisis , Compostaje/métodos , Microbiología del Suelo , Medicamentos Herbarios Chinos/química , Suelo/química
20.
Metabolism ; 155: 155916, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615945

RESUMEN

Exercise is an effective non-pharmacological strategy for the treatment of nonalcoholic steatohepatitis (NASH), but the underlying mechanism needs further investigation. Kruppel-like factor 10 (Klf10) is a transcriptional factor that is expressed in multiple tissues including liver, whose role in NASH is not well defined. In our study, exercise induces hepatic Klf10 expression through the cAMP/PKA/CREB pathway. Hepatocyte-specific knockout of Klf10 (Klf10LKO) increases lipid accumulation, cell death, inflammation and fibrosis in NASH diet-fed mice and reduces the protective effects of treadmill exercise against NASH, while hepatocyte-specific overexpression of Klf10 (Klf10LTG) works in concert with exercise to reduce NASH in mice. Mechanistically, Klf10 promotes the expression of fumarate hydratase 1 (Fh1), thereby reducing fumarate accumulation in hepatocytes. This decreases the trimethyl (me3) levels of histone 3 lysine 4 (H3K4me3) on lipogenic genes promoters to attenuate lipogenesis, thus ameliorating free fatty acids (FFAs)-induced hepatocytes steatosis, apoptosis, insulin resistance and blunting dysfunctional hepatocytes-mediated activation of macrophages and hepatic stellate cells. Therefore, by regulating the Fh1/fumarate/H3K4me3 pathway, Klf10 acts as a downstream effector of exercise to combat NASH.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz , Factores de Transcripción de Tipo Kruppel , Hígado , Enfermedad del Hígado Graso no Alcohólico , Condicionamiento Físico Animal , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Condicionamiento Físico Animal/fisiología , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino , Lipogénesis/genética , Lipogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA