Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
World J Gastrointest Oncol ; 16(5): 2060-2073, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764821

RESUMEN

BACKGROUND: Targeting DNA damage response (DDR) pathway is a cutting-edge strategy. It has been reported that Schlafen-11 (SLFN11) contributes to increase chemosensitivity by participating in DDR. However, the detailed mechanism is unclear. AIM: To investigate the role of SLFN11 in DDR and the application of synthetic lethal in esophageal cancer with SLFN11 defects. METHODS: To reach the purpose, eight esophageal squamous carcinoma cell lines, 142 esophageal dysplasia (ED) and 1007 primary esophageal squamous cell carcinoma (ESCC) samples and various techniques were utilized, including methylation-specific polymerase chain reaction, CRISPR/Cas9 technique, Western blot, colony formation assay, and xenograft mouse model. RESULTS: Methylation of SLFN11 was exhibited in 9.15% of (13/142) ED and 25.62% of primary (258/1007) ESCC cases, and its expression was regulated by promoter region methylation. SLFN11 methylation was significantly associated with tumor differentiation and tumor size (both P < 0.05). However, no significant associations were observed between promoter region methylation and age, gender, smoking, alcohol consumption, TNM stage, or lymph node metastasis. Utilizing DNA damaged model induced by low dose cisplatin, SLFN11 was found to activate non-homologous end-joining and ATR/CHK1 signaling pathways, while inhibiting the ATM/CHK2 signaling pathway. Epigenetic silencing of SLFN11 was found to sensitize the ESCC cells to ATM inhibitor (AZD0156), both in vitro and in vivo. CONCLUSION: SLFN11 is frequently methylated in human ESCC. Methylation of SLFN11 is sensitive marker of ATM inhibitor in ESCC.

2.
Cancer Biol Ther ; 25(1): 2302924, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226836

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (ZSCAN23) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of ZSCAN23 in PDAC. ZSCAN23 was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of ZSCAN23 inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. ZSCAN23 suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, ZSCAN23 inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. ZSCAN23 is frequently methylated in PDAC and may serve as a detective marker. ZSCAN23 suppresses PDAC cell growth both in vitro and in vivo.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , Vía de Señalización Wnt/genética , Dedos de Zinc
3.
Clin Transl Gastroenterol ; 15(3): e00682, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235705

RESUMEN

INTRODUCTION: The aim of this study was to investigate the epigenetic regulation and underlying mechanism of NRIP3 in colorectal cancer (CRC). METHODS: Eight cell lines (SW480, SW620, DKO, LOVO, HT29, HCT116, DLD1, and RKO), 187 resected margin samples from colorectal cancer tissue, 146 cases with colorectal adenomatous polyps, and 308 colorectal cancer samples were used. Methylation-specific PCR, Western blotting, RNA interference assay, and a xenograft mouse model were used. RESULTS: NRIP3 exhibited methylation in 2.7% (5/187) of resected margin samples from colorectal cancer tissue, 32.2% (47/146) of colorectal adenomatous polyps, and 50.6% (156/308) of CRC samples, and the expression of NRIP3 was regulated by promoter region methylation. The methylation of NRIP3 was found to be significantly associated with late onset (at age 50 years or older), poor tumor differentiation, lymph node metastasis, and poor 5-year overall survival in CRC (all P < 0.05). In addition, NRIP3 methylation was an independent poor prognostic marker ( P < 0.05). NRIP3 inhibited cell proliferation, colony formation, invasion, and migration, while induced G1/S arrest. NRIP3 suppressed CRC growth by inhibiting PI3K-AKT signaling both in vitro and in vivo . Methylation of NRIP3 sensitized CRC cells to combined PI3K and ATR/ATM inhibitors. DISCUSSION: NRIP3 was frequently methylated in both colorectal adenomatous polyps and CRC. The methylation of NRIP3 may potentially serve as an early detection, late-onset, and poor prognostic marker in CRC. NRIP3 is a potential tumor suppressor. NRIP3 methylation is a potential synthetic lethal marker for combined PI3K and ATR/ATM inhibitors.


Asunto(s)
Pólipos Adenomatosos , Neoplasias Colorrectales , Humanos , Animales , Ratones , Persona de Mediana Edad , Metilación de ADN , Epigénesis Genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células HCT116 , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Pólipos Adenomatosos/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
4.
Oncogene ; 43(7): 495-510, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168654

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Humanos , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Esofágicas/genética , Evasión Inmune , Proteínas Señalizadoras YAP , Macrófagos/metabolismo , Fagocitosis , Línea Celular Tumoral , Microambiente Tumoral , Antígeno CD24
5.
Chin Med J (Engl) ; 137(3): 273-282, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37882090

RESUMEN

BACKGROUND: Asthma imposes a large healthcare burden in China and the United States (US). However, the trends of asthma mortality and the relative risk factors have not been comparatively analyzed between the countries. The aim of this study was to compare the mortality and risk factors between China and the US. METHODS: The deaths, and mortality rates of asthma in China and the US during 1990-2019 were obtained from the Global Burden of Disease Study 2019. The age-period-cohort model was used to estimate these mortality rates based on a log-linear scale with additive age, period, and cohort effects. The population attributable fractions of risk factors for asthma were estimated. RESULTS: In 1990-2019, the asthma mortality rate was higher in China than in the US. The crude and age-standardized asthma mortality rates trended downward in both China and the US from 1990 to 2019. The decline in mortality was more obvious in China. Mortality gap between the two countries was narrowing. A sex difference in asthma mortality was observed with higher mortality in males in China and females in the US. The age effects showed that mortality increased with age in adults older than 20 years, particularly in the elderly. Downward trends were generally observed in the period and cohort rate ratios in both countries, with China experiencing a more obvious decrease. Smoking and high body mass index (BMI) were the leading risk factors for asthma mortality in China and the US, respectively. Mortality attributable to occupational asthmagens and smoking decreased the most in China and the US, respectively. CONCLUSIONS: In 1990-2019, the asthma mortality rate was higher in China than in the US; however, the mortality gap has narrowed. Mortality increased with age in adults. The improvements in asthma death risk with period and birth cohort were more obvious in China than in the US. Smoking, high BMI, and aging are major health problems associated with asthma control. The role of occupational asthmagens in asthma mortality underscores the importance of management and prevention of occupational asthma.


Asunto(s)
Asma , Adulto , Humanos , Masculino , Femenino , Estados Unidos/epidemiología , Anciano , Adulto Joven , Asma/epidemiología , Factores de Riesgo , Fumar , China/epidemiología
6.
Epigenomics ; 15(22): 1205-1220, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38093706

RESUMEN

Aim: The mechanism of RASSF1A in DNA damage repair remains to be further clarified for applying to synthetic lethal strategy. Materials & methods: Eight esophageal cancer cell lines, 181 cases of esophageal dysplasia and 1066 cases of primary esophageal squamous cell carcinoma (ESCC) were employed. Methylation-specific PCR, the CRISPR/Cas9 technique, immunoprecipitation assay and a xenograft mouse model were used. Results: RASSF1A was methylated in 2.21% of esophageal dysplasia and 11.73% of ESCC. RASSF1A was also involved in DNA damage repair through activating Hippo signaling. Loss of RASSF1A expression sensitized esophageal cancer cell lines to ataxia telangiectasia mutated and rad3-related (ATR) inhibitor (VE-822) both in vitro and in vivo. Conclusion: RASSF1A methylation is a synthetic lethal marker for ATR inhibitors.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Animales , Ratones , Neoplasias Esofágicas/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Esófago/genética , Metilación de ADN , Línea Celular Tumoral , Proteínas de la Ataxia Telangiectasia Mutada/genética
7.
J Transl Int Med ; 11(3): 234-245, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37818156

RESUMEN

Background and Objectives: An increased risk of cardiovascular and metabolic diseases (CVMDs) among patients with cancer suggests a potential link between CVMD and cancer. The impact of CVMD on the survival time of patients with esophageal and gastric cancer remains unknown. We aimed to determine the incidence of CVMD and its impact on the longterm outcomes in esophageal and gastric cancer patients. Methods: A total of 2074 cancer patients were enrolled from January 1, 2007 to December 31, 2017 in two hospitals, including 1205 cases of esophageal cancer and 869 cases of gastric cancer, who were followed up for a median of 79.8 and 79.3 months, respectively. Survival time was analyzed using the Kaplan-Meier method before and after propensity score matching. Results: The incidence of CVMD in patients with esophageal and gastric cancer was 34.1% (411/1205) and 34.3% (298/869), respectively. The effects of hypertension, diabetes, and stroke on the long-term survival of esophageal and gastric cancer patients were not significant (all P > 0.05). The survival time was significantly longer in esophageal cancer patients without ischemic heart disease than in patients with ischemic heart disease, both before matching (36.5 vs. 29.1 months, P = 0.027) and after matching (37.4 vs. 27.9 months, P = 0.011). The survival time in gastric cancer patients without ischemic heart disease was significantly longer than in patients with ischemic heart disease, both before (28.4 vs.17.5 months, P = 0.032) and after matching (29.5 vs.17.5 months, P = 0.02). Conclusion: The survival time of esophageal and gastric cancer patients with ischemic heart disease was significantly reduced compared to that of esophageal and gastric cancer patients without ischemic heart disease.

8.
J Exp Clin Cancer Res ; 42(1): 249, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752569

RESUMEN

BACKGROUND: Hypoxia is one of most typical features in the tumor microenvironment of solid tumor and an inducer of endoplasmic reticulum (ER) stress, and HIF-1α functions as a key transcription factor regulator to promote tumor angiogenesis in the adaptive response to hypoxia. Increasing evidence has suggested that hypoxia plays an important regulatory role of ER homeostasis. We previously identified TMTC3 as an ER stress mediator under nutrient-deficiency condition in esophageal squamous cell carcinoma (ESCC), but the molecular mechanism in hypoxia is still unclear. METHODS: RNA sequencing data of TMTC3 knockdown cells and TCGA database were analyzed to determine the association of TMTC3 and hypoxia. Moreover, ChIP assay and dual-luciferase reporter assay were performed to detect the interaction of HIF-1α and TMTC3 promoter. In vitro and in vivo assays were used to investigate the function of TMTC3 in tumor angiogenesis. The molecular mechanism was determined using co-immunoprecipitation assays, immunofluorescence assays and western blot. The TMTC3 inhibitor was identified by high-throughput screening of FDA-approved drugs. The combination of TMTC3 inhibitor and cisplatin was conducted to confirm the efficiency in vitro and in vivo. RESULTS: The expression of TMTC3 was remarkably increased under hypoxia and regulated by HIF-1α. Knockdown of TMTC3 inhibited the capability of tumor angiogenesis and ROS production in ESCC. Mechanistically, TMTC3 promoted the production of GTP through interacting with IMPDH2 Bateman domain. The activity of Rho GTPase/STAT3, regulated by cellular GTP levels, decreased in TMTC3 knockdown cells, whereas reversed by IMPDH2 overexpression. Additionally, TMTC3 regulated the expression of VEGFA through Rho GTPase/STAT3 pathway. Allopurinol inhibited the expression of TMTC3 and further reduced the phosphorylation and activation of STAT3 signaling pathway in a dose-dependent manner in ESCC. Additionally, the combination of allopurinol and cisplatin significantly inhibited the cell viability in vitro and tumor growth in vivo, comparing with single drug treatment, respectively. CONCLUSIONS: Collectively, our study clarified the molecular mechanism of TMTC3 in regulating tumor angiogenesis and highlighted the potential therapeutic combination of TMTC3 inhibitor and cisplatin, which proposed a promising strategy for the treatment of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Alopurinol , Cisplatino/farmacología , Neoplasias Esofágicas/genética , Guanosina Trifosfato , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular , Factor de Transcripción STAT3/genética , Proteínas Portadoras , Proteínas de la Membrana
9.
Front Med ; 17(5): 907-923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37682378

RESUMEN

The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama , Carcinoma Ductal Pancreático , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/uso terapéutico , Proteínas del Tejido Nervioso/genética , Tumores Neuroendocrinos/genética , Oncogenes , Neoplasias Pancreáticas/metabolismo
10.
Allergy Asthma Immunol Res ; 15(5): 614-635, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37153982

RESUMEN

PURPOSE: Although estrogen receptors (ERs) signal pathways are involved in the pathogenesis and development of asthma, their expressions and effects remain controversial. This study aimed to investigate the expressions of ERα and ERß as well as their mechanisms in airway remodeling and mucus production in asthma. METHODS: The expressions of ERα and ERß in the airway epithelial cells of bronchial biopsies and induced sputum cells were examined by immunohistochemistry. The associations of ERs expressions with airway inflammation and remodeling were evaluated in asthmatic patients. In vitro, the regulations of ERs expressions in human bronchial epithelial cell lines were examined using western blot analysis. The epidermal growth factor (EGF)-mediated ligand-independent activation of ERα and its effect on epithelial-mesenchymal transitions (EMTs) were investigated in asthmatic epithelial cells by western blot, immunofluorescent staining, and quantitative real-time polymerase chain reaction. RESULTS: ERα and ERß were expressed on both bronchial epithelial cells and induced sputum cells, and the expressions showed no sex difference. Compared to controls, male asthmatic patients had higher levels of ERα on the bronchial epithelium, and there were cell-specific expressions of ERα and ERß in induced sputum. The expression of ERα in the airway epithelium was inversely correlated to forced expiratory volume in 1 second (FEV1) % and FEV1/forced vital capacity. Severe asthmatic patients had significantly greater levels of ERα in the airway epithelium than mild-moderate patients. ERα level was positively correlated with the thickness of the subepithelial basement membrane and airway epithelium. In vitro, co-stimulation of interleukin (IL)-4 and EGF increased the expression of ERα and promoted its nuclear translocation. EGF activated the phosphorylation of ERα via extracellular signal-regulated kinase and c-Jun N-terminal kinase pathways. ERα knockdown alleviated EGF-mediated EMTs and mucus production in airway epithelial cells of asthma. CONCLUSIONS: ERα contributes to asthmatic airway remodeling and mucus production through the EGF-mediated ligand-independent pathway.

11.
Front Oncol ; 13: 1078768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798826

RESUMEN

Notch signaling is involved in cell fate determination and deregulated in human solid tumors. Hypoxia is an important feature in many solid tumors, which activates hypoxia-induced factors (HIFs) and their downstream targets to promote tumorigenesis and cancer development. Recently, HIFs have been shown to trigger the Notch signaling pathway in a variety of organisms and tissues. In this review, we focus on the pro- and anti-tumorigenic functions of Notch signaling and discuss the crosstalk between Notch signaling and cellular hypoxic response in cancer pathogenesis, including epithelia-mesenchymal transition, angiogenesis, and the maintenance of cancer stem cells. The pharmacological strategies targeting Notch signaling and hypoxia in cancer are also discussed in this review.

12.
Clin Epigenetics ; 14(1): 164, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461092

RESUMEN

BACKGROUND: The role of JAM3 in different tumors is controversial. The epigenetic regulation and the mechanism of JAM3 remain to be elucidated in human esophageal cancer (EC). METHODS: Eleven EC cell lines, 49 cases of esophageal intraepithelial neoplasia (EIN) and 760 cases of primary EC samples were employed. Methylation-specific polymerase chain reaction, immunohistochemistry, MTT, western blot and xenograft mouse models were applied in this study. RESULTS: The inverse association between RNA expression and promoter region methylation of JAM3 was found by analyzing 185 cases of EC samples extracted from the TCGA database (p < 0.05). JAM3 was highly expressed in KYSE450, KYSE520, TE1 and YES2 cells, low level expressed in KYSE70 cells and unexpressed in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells. JAM3 was unmethylated in KYSE450, KYSE520, TE1 and YES2 cells, partial methylated in KYSE70 cells and completely methylated in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells. The expression of JAM3 is correlated with methylation status. The levels of JAM3 were unchanged in KYSE450, KYSE520, TE1 and YES2 cells, increased in KYSE70 cells and restored expression in KYSE30, KYSE150, KYSE410, KYSE510, TE13 and BIC1 cells after 5-aza-2'-deoxycytidine treatment, suggesting that the expression of JAM3 is regulated by promoter region methylation. JAM3 was methylated in 26.5% (13/49) of EIN and 51.1% (388/760) of primary EC, and methylation of JAM3 was associated significantly with tumor differentiation and family history (all p < 0.05). Methylation of JAM3 is an independent prognostic factor of poor 5-year overall survival (p < 0.05). JAM3 suppresses cell proliferation, colony formation, migration and invasion and induces G1/S arrest and apoptosis in EC. Further study demonstrated that JAM3 suppressed EC cells and xenograft tumor growth by inhibiting Wnt/ß-catenin signaling. CONCLUSION: JAM3 is frequently methylated in human EC, and the expression of JAM3 is regulated by promoter region methylation. JAM3 methylation is an early detection and prognostic marker of EC. JAM3 suppresses EC growth both in vitro and in vivo by inhibiting Wnt signaling.


Asunto(s)
Moléculas de Adhesión Celular , Epigénesis Genética , Neoplasias Esofágicas , Animales , Humanos , Ratones , Moléculas de Adhesión Celular/genética , Decitabina , Metilación de ADN , Neoplasias Esofágicas/genética , Inmunoglobulinas , Procesamiento Proteico-Postraduccional , Vía de Señalización Wnt
13.
Front Oncol ; 12: 831268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480112

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC. Methods: The expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing. Results: PRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low ) to very high (PRSS3High ) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow ) and hypomethylated high-expression (umPRSS3-SVHigh ) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome. Conclusions: These results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.

14.
Respir Res ; 23(1): 6, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016680

RESUMEN

BACKGROUND: Hypoxic pulmonary hypertension (HPH) is a chronic progressive advanced disorder pathologically characterized by pulmonary vascular remodeling. Notch4 as a cell surface receptor is critical for vascular development. However, little is known about the role and mechanism of Notch4 in the development of hypoxic vascular remodeling. METHODS: Lung tissue samples were collected to detect the expression of Notch4 from patients with HPH and matched controls. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic and normoxic conditions. Real-time quantitative PCR and western blotting were used to examine the mRNA and protein levels of Notch4. HPASMCs were transfected with small interference RNA (siRNA) against Notch4 or Notch4 overexpression plasmid, respectively. Cell viability, cell proliferation, apoptosis, and migration were assessed using Cell Counting Kit-8, Edu, Annexin-V/PI, and Transwell assay. The interaction between Notch4 and ERK, JNK, P38 MAPK were analyzed by co-immunoprecipitation. Adeno-associated virus 1-mediated siRNA against Notch4 (AAV1-si-Notch4) was injected into the airways of hypoxic rats. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodeling were evaluated. RESULTS: In this study, we demonstrate that Notch4 is highly expressed in the media of pulmonary vascular and is upregulated in lung tissues from patients with HPH and HPH rats compared with control groups. In vitro, hypoxia induces the high expression of Delta-4 and Notch4 in HPASMCs. The increased expression of Notch4 promotes HPASMCs proliferation and migration and inhibits cells apoptosis via ERK, JNK, P38 signaling pathways. Furthermore, co-immunoprecipitation result elucidates the interaction between Notch4 and ERK/JNK/P38. In vivo, silencing Notch4 partly abolished the increase in RVSP and pulmonary vascular remodeling caused by hypoxia in HPH rats. CONCLUSIONS: These findings reveal an important role of the Notch4-ERK/JNK/P38 MAPK axis in hypoxic pulmonary remodeling and provide a potential therapeutic target for patients with HPH.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión Pulmonar/genética , Hipoxia/complicaciones , Miocitos del Músculo Liso/metabolismo , Receptor Notch4/genética , Remodelación Vascular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipoxia/genética , Hipoxia/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptor Notch4/biosíntesis , Transducción de Señal , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis
15.
Gut ; 71(2): 238-253, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34836916

RESUMEN

OBJECTIVE: Helicobacter pylori infection is mostly a family-based infectious disease. To facilitate its prevention and management, a national consensus meeting was held to review current evidence and propose strategies for population-wide and family-based H. pylori infection control and management to reduce the related disease burden. METHODS: Fifty-seven experts from 41 major universities and institutions in 20 provinces/regions of mainland China were invited to review evidence and modify statements using Delphi process and grading of recommendations assessment, development and evaluation system. The consensus level was defined as ≥80% for agreement on the proposed statements. RESULTS: Experts discussed and modified the original 23 statements on family-based H. pylori infection transmission, control and management, and reached consensus on 16 statements. The final report consists of three parts: (1) H. pylori infection and transmission among family members, (2) prevention and management of H. pylori infection in children and elderly people within households, and (3) strategies for prevention and management of H. pylori infection for family members. In addition to the 'test-and-treat' and 'screen-and-treat' strategies, this consensus also introduced a novel third 'family-based H. pylori infection control and management' strategy to prevent its intrafamilial transmission and development of related diseases. CONCLUSION: H. pylori is transmissible from person to person, and among family members. A family-based H. pylori prevention and eradication strategy would be a suitable approach to prevent its intra-familial transmission and related diseases. The notion and practice would be beneficial not only for Chinese residents but also valuable as a reference for other highly infected areas.


Asunto(s)
Salud de la Familia , Infecciones por Helicobacter/prevención & control , Helicobacter pylori , Control de Infecciones/organización & administración , Adolescente , Adulto , Anciano , Niño , Preescolar , China , Consenso , Técnica Delphi , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/transmisión , Humanos , Lactante , Persona de Mediana Edad , Adulto Joven
16.
Respir Res ; 22(1): 312, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906150

RESUMEN

BACKGROUND: Hypoxic pulmonary hypertension (PH) is a refractory pulmonary vascular remodeling disease, and the efficiency of current PH treatment strategies is unsatisfactory. Tribbles homolog 3 (TRB3), a member of the pseudokinase family, is upregulated in diverse types of cellular stresses and functions as either a pro-proliferative or pro-apoptotic factor depending on the specific microenvironment. The regulatory mechanisms of TRB3 in hypoxic PH are poorly understood. METHODS: We performed studies using TRB3-specific silencing and overexpressing lentiviral vectors to investigate the potential roles of TRB3 on hypoxic pulmonary artery smooth muscle cells (PASMCs). Adeno-associated virus type 1(AVV1) vectors encoding short-hairpin RNAs against rat TRB3 were used to assess the role of TRB3 on hypoxic PH. TRB3 protein expression in PH patients was explored in clinical samples by western blot analysis. RESULTS: The results of whole-rat genome oligo microarrays showed that the expression of TRB3 and endoplasmic reticulum stress (ERS)-related genes was upregulated in hypoxic PASMCs. TRB3 protein expression was significantly upregulated by hypoxia and thapsigargin. In addition, 4-PBA and 4µ8C, both inhibitors of ERS, decreased the expression of TRB3. TRB3 knockdown promoted apoptosis and damaged the proliferative and migratory abilities of hypoxic PASMCs as well as inhibited activation of the MAPK signaling pathway. TRB3 overexpression stimulated the proliferation and migration of PASMCs but decreased the apoptosis of PASMCs, which was partly reversed by specific inhibitors of ERK, JNK and p38 MAPK. The Co-IP results revealed that TRB3 directly interacts with ERK, JNK, and p38 MAPK. Knockdown of TRB3 in rat lung tissue reduced the right ventricular systolic pressure and decreased pulmonary medial wall thickness in hypoxic PH model rats. Further, the expression of TRB3 in lung tissues was higher in patients with PH compared with those who have normal pulmonary artery pressure. CONCLUSIONS: TRB3 was upregulated in hypoxic PASMCs and was affected by ERS. TRB3 plays a key role in the pathogenesis of hypoxia-induced PH by binding and activating the ERK, JNK, and p38 MAPK pathways. Thus, TRB3 might be a promising target for the treatment of hypoxic PH.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Hipertensión Pulmonar/genética , Hipoxia/complicaciones , Sistema de Señalización de MAP Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Remodelación Vascular/genética , Animales , Apoptosis , Comunicación Celular , Modelos Animales de Enfermedad , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Masculino , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba
17.
Front Genet ; 12: 714071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539742

RESUMEN

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy, and the incidence is increasing very fast. Surgical resection and radioactive iodine ablation are major therapeutic methods, however, around 10% of differentiated thyroid cancer and all anaplastic thyroid carcinoma (ATC) are failed. Comprehensive understanding the molecular mechanisms may provide new therapeutic strategies for thyroid cancer. Even though genetic heterogeneity is rigorously studied in various cancers, epigenetic heterogeneity in human cancer remains unclear. METHODS: A total of 405 surgical resected thyroid cancer samples were employed (three spatially isolated specimens were obtained from different regions of the same tumor). Twenty-four genes were selected for methylation screening, and frequently methylated genes in thyroid cancer were used for further validation. Methylation specific PCR (MSP) approach was employed to detect the gene promoter region methylation. RESULTS: Five genes (AP2, CDH1, DACT2, HIN1, and RASSF1A) are found frequently methylated (>30%) in thyroid cancer. The five genes panel is used for further epigenetic heterogeneity analysis. AP2 methylation is associated with gender (P < 0.05), DACT2 methylation is associated with age, gender and tumor size (all P < 0.05), HIN1 methylation is associated to tumor size (P < 0.05) and extra-thyroidal extension (P < 0.01). RASSF1A methylation is associated with lymph node metastasis (P < 0.01). For heterogeneity analysis, AP2 methylation heterogeneity is associated with tumor size (P < 0.01), CDH1 methylation heterogeneity is associated with lymph node metastasis (P < 0.05), DACT2 methylation heterogeneity is associated with tumor size (P < 0.01), HIN1 methylation heterogeneity is associated with tumor size and extra-thyroidal extension (all P < 0.01). The multivariable analysis suggested that the risk of lymph node metastasis is 2.5 times in CDH1 heterogeneous methylation group (OR = 2.512, 95% CI 1.135, 5.557, P = 0.023). The risk of extra-thyroidal extension is almost 3 times in HIN1 heterogeneous methylation group (OR = 2.607, 95% CI 1.138, 5.971, P = 0.023). CONCLUSION: Five of twenty-four genes were found frequently methylated in human thyroid cancer. Based on 5 genes panel analysis, epigenetic heterogeneity is an universal event. Epigenetic heterogeneity is associated with cancer development and progression.

18.
Epigenomics ; 13(17): 1403-1419, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34558311

RESUMEN

Aim: The role of TMEM176A methylation in lung cancer and its therapeutic application remains unclear. Materials and methods: Nine lung cancer cell lines and 123 cases of cancer tissue samples were employed. Results:TMEM176A was methylated in 53.66% of primary lung cancer. Restoration of TMEM176A expression induced cell apoptosis and G2/M phase arrest, and inhibited colony formation, cell proliferation, migration and invasion. TMEM176A suppressed H1299 cell xenograft growth in mice. Methylation of TMEM176A activated ERK signaling and sensitized H1299 and H23 cells to AZD0156, an ATM inhibitor. Conclusion: The expression of TMEM176A is regulated by promoter region methylation. Methylation of TMEM176A is a potential lung cancer diagnostic marker and a novel synthetic lethal therapeutic marker for AZD0156.


Lay abstract The TMEM176A gene is often methylated in human lung cancer by addition of a methyl group to the gene promotor region. This regulates the expression of TMEM176A. We found that TMEM176A suppressed lung cancer growth both invitro and invivo by inhibiting ERK signaling. Methylation of TMEM176A sensitized H1299 and H23 cells to AZD0156, an ATM kinase inhibitor used to induce tumor cell death. Re-expression of TMEM176A reduced the sensitivity of these cells to AZD0156. Methylation of TMEM176A is a novel synthetic lethality therapeutic marker of AZD0156 in human lung cancer.


Asunto(s)
Neoplasias Pulmonares/genética , Proteínas de la Membrana/genética , Transducción de Señal/genética , Mutaciones Letales Sintéticas , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular , Metilación de ADN , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Quinolinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Cancer Res Ther ; 17(3): 644-651, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34269294

RESUMEN

AIMS: The aim of this study was to evaluate the role of BCL6B methylation in the progression of early-stage hepatocellular carcinoma (HCC) after thermal ablation. SETTINGS AND DESIGN: This is a retrospective study and written informed consent was obtained from all patients or their legal guardians. SUBJECTS AND METHODS: Between October 2008 and December 2013, 73 patients with early-stage HCC within the Milan criteria, who received thermal ablation, were recruited. STATISTICAL ANALYSIS USED: Based on methylation-specific polymerase chain reaction, the relationship between BCL6B methylation and patient characteristics and prognosis was analyzed using univariate, multivariate, and Kaplan-Meier analysis. RESULTS: The median follow-up period was 56 (8-110) months. For the BCL6B unmethylated group, the 1-, 3- and 5-year metastasis and overall survival (OS) rates after thermal ablation were 10.0%, 10.0%, and 40.0% and 100%, 100% and 90.0%, respectively. The 1-, 3-, and 5-year metastasis and OS rates of the methylated group were 23.8%, 66.7% and 88.9% and 66.2%, 71.4% and 41.3%, respectively. Levels of absolute count lymphocyte, serum cholinesterase and albumin in the BCL6B unmethylated group were higher than those in the methylated group (P = 0.020, 0.000, and 0.009, respectively). Kaplan-Meier analysis revealed that BCL6B methylation was related to metastasis and poor prognosis (P = 0.001 and 0.018, respectively). Univariate analysis revealed that BCL6B methylation was a risk factor for metastasis and poor prognosis (odds ratio [OR]: 5.663; 95% confidence interval [CI], 1.745-18.375, P = 0.004 and OR: 3.734; 95% CI, 1.151-12.110, P = 0.028, respectively). Multivariate analysis revealed that BCL6B methylation was an independent risk factor for metastasis (OR: 3.736; 95% CI, 1.000-13.963,P = 0.05) and not for prognosis (OR: 2.780; 95% CI, 0.835-9.250,P = 0.096). CONCLUSIONS: BCL6B methylation could be a valuable prognostic factor for metastasis and poor prognosis in early-stage HCC after thermal ablation, which is an independent risk factor for metastasis. Our findings provide insights for combining ablation and epigenetic therapy for patients with HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Ablación por Radiofrecuencia/métodos , Proteínas Represoras/genética , Adulto , Anciano , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/secundario , Carcinoma Hepatocelular/cirugía , Metilación de ADN , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
20.
Cancer Sci ; 112(7): 2870-2883, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33931924

RESUMEN

Wnt, PI3K-Akt-mTOR, and NF-κB pathways were reported to be involved in DNA damage repair (DDR). DDR-deficient cancers become critically dependent on backup DNA repair pathways. Neuritin 1 (NRN1) is reported to be involved in PI3K-Akt-mTOR, and its role in DDR remains unclear. Methylation-specific PCR, siRNA, flow cytometry, esophageal cancer cell lines, and xenograft mouse models were used to examine the role of NRN1 in esophageal cancer. The expression of NRN1 is frequently repressed by promoter region methylation in human esophageal cancer cells. NRN1 was methylated in 50.4% (510/1012) of primary esophageal cancer samples. NRN1 methylation is associated significantly with age (P < .001), tumor size (P < .01), TNM stage (P < .001), differentiation (P < .001) and alcohol consumption (P < .05). We found that NRN1 methylation is an independent prognostic factor for poor 5-y overall survival (P < .001). NRN1 inhibits colony formation, cell proliferation, migration, and invasion, and induces apoptosis and G1/S arrest in esophageal cancer cells. NRN1 suppresses KYSE150 and KYSE30 cells xenografts growth in nude mice. PI3K signaling is reported to activate ATR signaling by targeting CHK1, the downstream component of ATR. By analyzing the synthetic efficiency of NVP-BEZ235 (PI3K inhibitor) and VE-822 (an ATR inhibitor), we found that the combination of NVP-BEZ235 and VE-822 increased cytotoxicity in NRN1 methylated esophageal cancer cells, as well as KYSE150 cell xenografts. In conclusion, NRN1 suppresses esophageal cancer growth both in vitro and in vivo by inhibiting PI3K-Akt-mTOR signaling. Methylation of NRN1 is a novel synthetic lethal marker for PI3K-Akt-mTOR and ATR inhibitors in human esophageal cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Reparación del ADN , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Neuropéptidos/metabolismo , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Consumo de Bebidas Alcohólicas , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Daño del ADN , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Xenoinjertos , Humanos , Masculino , Metilación , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Trasplante de Neoplasias , Neuropéptidos/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Pronóstico , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA