Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Cardiol ; 46(12): 1465-1473, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661458

RESUMEN

BACKGROUND: Because of the advancement of bioabsorbable polymers and thinner struts, bioabsorbable-polymer sirolimus-eluting stents (BP-SES) with ultrathin struts may be related to superior performance when compared to durable-polymer drug-eluting stents (DP-DES) with thin struts. Nonetheless, the long-term safety of ultrathin BP-SES in acute coronary syndrome (ACS) remains unknown. METHODS: We sought to assess the long-term safety of ultrathin BP-SES in ACS patients, conducting a thorough meta-analysis of all relevant trials drawing a comparison between ultrathin BP-SES and contemporary thin DP-DES. Target lesion failure (TLF), which includes cardiac death (CD), target-vessel myocardial infarction (TV-MI), and clinically driven target lesion revascularization (CD-TLR) was considered the primary endpoint. Multiple databases comprising Embase, MEDLINE, Cochrane Library, and Pubmed were all thoroughly searched. RESULTS: There were seven randomized controlled trials included in our study with 7522 randomized patients with ACS (BP-SES = 3888, DP-DES = 3634). TLF occurred in 371 (9.5% in BP-SES) and 393 (10.8% in DP-DES) patients, respectively, across a 40.7-month weighted mean follow-up, with no statistically significant group differences (risk ratio [RR]: 0.87; 95% confidence interval [CI]: 0.73-1.04; p = .12). Furthermore, no significant differences in cardiac death (RR: 0.96; 95% CI: 0.68-1.35; p = .81), TV-MI (RR: 0.63; 95% CI: 0.36-1.10; p = .10) and CD-TLR (RR: 0.77; 95% CI: 0.46-1.29; p = .32) were detected between two groups. CONCLUSION: During a follow-up of 40.7 months, ultrathin BP-SES and thin DP-DES had a comparable risk of TLF and its individual components (CD, TV-MI, and CD-TLR), indicating that ultrathin BP-SES held at least the same safety and efficiency as thin DP-DES presented in patients with ACS.


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , Stents Liberadores de Fármacos , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Sirolimus , Everolimus , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/cirugía , Polímeros , Enfermedad de la Arteria Coronaria/complicaciones , Implantes Absorbibles , Resultado del Tratamiento , Infarto del Miocardio/etiología , Stents/efectos adversos , Muerte , Intervención Coronaria Percutánea/efectos adversos , Diseño de Prótesis , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Redox Biol ; 64: 102763, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354827

RESUMEN

NADPH oxidases 2 (NOX2) is the main source of ROS in macrophages, which plays a critical role in the formation of atherosclerosis. However, effects of NOX2 inhibition on established vulnerable plaques and the potential role involved remain unclear. The purpose of this study is to investigate the latent mechanism of NOX2-triggered vulnerable plaque development. We generated a vulnerable carotid plaque model induced by carotid branch ligation and renal artery constriction, combined with a high-fat diet in ApoE-/- mice. NOX2 specific inhibitor, GSK2795039 (10 mg/kg/day by intragastric administration for 8 weeks) significantly prevented vulnerable plaque, evaluated by micro-ultrasound imaging parameters. A profile of less intraplaque hemorrhage detection, increased collagen-lipid ratio, fibrous cap thickness and less necrotic core formation were also found in GSK2795039 treated group. Mechanistically, reduced 4-HNE, in situ lesional apoptosis and enhanced efferocytosis were involved in mice treated with NOX2 inhibitor. Further analysis in mouse macrophages confirmed the role of NOX2 inhibition in enhancing macrophage efferocytosis by regulating the MertK/PI3K/AKT pathway. In summary, our data defined previously few recognized roles of NOX2 in vulnerable plaque pathogenesis and an undescribed NOX2-ROS-MerTK axis acts involved in regulating macrophage efferocytosis in the formation of rupture-prone vulnerable plaques.


Asunto(s)
Placa Aterosclerótica , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA