Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Planta ; 260(1): 25, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861219

RESUMEN

MAIN CONCLUSION: In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.


Asunto(s)
Clorofila , Luz , Magnoliopsida , Temperatura , Clorofila/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/fisiología , Magnoliopsida/genética , Agua/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Ambiente , Altitud
2.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528464

RESUMEN

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Asunto(s)
Arabidopsis , Sapindaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Hojas de la Planta/metabolismo , Sapindaceae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Dis ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301220

RESUMEN

Loquat (Eriobotrya japonica) is an economically important subtropical fruit crop in China. Field surveys conducted in different loquat orchards located in Chongqing, Sichuan and Fujian province between 2017-2020 resulted in a collection of 56 Alternaria-like isolates from trees exhibiting symptoms of loquat leaf spot. Multigene phylogenetic analyses using seven gene regions, namely ITS, gapdh, RPB2, tef1, Alt a 1, endoPG and OPA10-2, showed that all the isolates belonged to the genus Alternaria, and supporting morphological analysis identified them as members of species A. alternata, A. gaisen and A. chongqingensis sp. nov. In vitro- and in vivo- pathogenicity tests showed all the identified species to be pathogenic and able to cause leaf spot disease on loquat. Moreover, comprehensive phylogenetic analyses employing all combinations of the above seven gene sequences revealed the capability of Alt a 1-tef1-endoPG to provide a well-resolved gene tree for Alternaria spp. at the species level. This study adds to the current knowledge on an unknown species (A. chongqingensis sp. nov.) and the first report of A. gaisen in loquat worldwide.

4.
Mol Breed ; 44(3): 20, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38404720

RESUMEN

Nonapomictic citrus tetraploids are desirable in citrus breeding for the production of triploid, seedless varieties, and polyploid rootstocks. However, only a few lines have been reported, and they were all generated using chemical methods. A 2x + 4 × cytochimera of the nonapomictic citrus variety 'Orah' mandarin, which developed from a bud mutant, was found due to its morphology differing from that of diploid plants and characterised via ploidy analysis combining flow cytometry and chromosome observation. The chimaera was stable, and there were 1.86-1.90 times as tetraploid cells as diploid cells. Anatomical structure observation revealed that the 'Orah' chimaera may be a periclinal chimaera with diploid cells in the L1 layer and tetraploid cells in the L2 and L3 layers. The chimaera showed some typical traits of polyploid plants, including thicker shoots, wider and thicker leaves, larger flowers and fruits, and fewer but larger seeds in fruits than in diploid plants. Almost all the seeds of the chimaera were monoembryonic. Most of the self-pollinated progenies of the chimaera were identified as tetraploids, and some triploid, pentaploid, and hexaploid plants were found. As a female, the chimaera produced allotriploids when crossed with Australian finger lime. In addition, 6 plants developed from polyembryonic seeds of the chimaera were identified as sexual tetraploid progenies with low-level recombinant genomes. Therefore, the 'Orah' 2x + 4 × chimaera can be used as a female parent to produce hybrid triploid and tetraploid citrus plants with high efficiency. Identification of the chimaera demonstrated that tetraploid citrus plants, especially nonapomictic varieties, can be generated from shoot bud mutants. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01456-x.

5.
Food Chem X ; 21: 101046, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38173902

RESUMEN

Triploid loquats are divided into yellow- and white-fleshed cultivars. To better understand taste variations in triploid loquat fruits, we used a UPLC-ESI-QTRAP-MS/MS-based widely targeted metabolomic analysis to examine the metabolic composition of two different color fleshed triploid loquats with a sample size of 54 and external validation method within a confidence level of P<0.05. We identified key flavor-related differentially accumulated metabolites using the variable importance in projection (VIP) value (VIP ≥ 1.0) and fold change ≥ 2 or ≤ 0.5. Furthermore, the results of the HPLC analysis showed that white-fleshed loquats had a low malic acid content. We also performed the UPLC-MS/MS system to investigate the carotenoids contents and lipidome in four triploid cultivars. In the fruits of white-fleshed varieties, the carotenoids contents were significantly downregulated, but the contents of most glycerolphospholipids were increased. Our results reveal the metabolomic changes between the yellow- and white-fleshed cultivars.

6.
Plant Commun ; 5(1): 100681, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37660253

RESUMEN

Bananas (Musa spp.) are monocotyledonous plants with high genetic diversity in the Musaceae family that are cultivated mainly in tropical and subtropical countries. The fruits are a popular food, and the plants themselves have diverse uses. Four genetic groups (genomes) are thought to have contributed to current banana cultivars: Musa acuminata (A genome), Musa balbisiana (B genome), Musa schizocarpa (S genome), and species of the Australimusa section (T genome). However, the T genome has not been effectively explored. Here, we present the high-quality TT genomes of two representative accessions, Abaca (Musa textilis), with high-quality natural fiber, and Utafun (Musa troglodytarum, Fe'i group), with abundant ß-carotene. Both the Abaca and Utafun assemblies comprise 10 pseudochromosomes, and their total genome sizes are 613 Mb and 619 Mb, respectively. Comparative genome analysis revealed that the larger size of the T genome is likely attributable to rapid expansion and slow removal of transposons. Compared with those of Musa AA or BB accessions or sisal (Agava sisalana), Abaca fibers exhibit superior mechanical properties, mainly because of their thicker cell walls with a higher content of cellulose, lignin, and hemicellulose. Expression of MusaCesA cellulose synthesis genes peaks earlier in Abaca than in AA or BB accessions during plant development, potentially leading to earlier cellulose accumulation during secondary cell wall formation. The Abaca-specific expressed gene MusaMYB26, which is directly regulated by MusaMYB61, may be an important regulator that promotes precocious expression of secondary cell wall MusaCesAs. Furthermore, MusaWRKY2 and MusaNAC68, which appear to be involved in regulating expression of MusaLAC and MusaCAD, may at least partially explain the high accumulation of lignin in Abaca. This work contributes to a better understanding of banana domestication and the diverse genetic resources in the Musaceae family, thus providing resources for Musa genetic improvement.


Asunto(s)
Musa , Musa/genética , Genoma de Planta , Lignina
7.
Plant Commun ; 5(2): 100766, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37974402

RESUMEN

Bananas (Musa spp.) are one of the world's most important fruit crops and play a vital role in food security for many developing countries. Most banana cultivars are triploids derived from inter- and intraspecific hybridizations between the wild diploid ancestor species Musa acuminate (AA) and M. balbisiana (BB). We report two haplotype-resolved genome assemblies of the representative AAB-cultivated types, Plantain and Silk, and precisely characterize ancestral contributions by examining ancestry mosaics across the genome. Widespread asymmetric evolution is observed in their subgenomes, which can be linked to frequent homologous exchange events. We reveal the genetic makeup of triploid banana cultivars and verify that subgenome B is a rich source of disease resistance genes. Only 58.5% and 59.4% of Plantain and Silk genes, respectively, are present in all three haplotypes, with >50% of genes being differentially expressed alleles in different subgenomes. We observed that the number of upregulated genes in Plantain is significantly higher than that in Silk at one-week post-inoculation with Fusarium wilt tropical race 4 (Foc TR4), which confirms that Plantain can initiate defense responses faster than Silk. Additionally, we compared genomic and transcriptomic differences among the genes related to carotenoid synthesis and starch metabolism between Plantain and Silk. Our study provides resources for better understanding the genomic architecture of cultivated bananas and has important implications for Musa genetics and breeding.


Asunto(s)
Fusarium , Musa , Musa/genética , Fusarium/genética , Haplotipos , Perfilación de la Expresión Génica , Transcriptoma
8.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108517

RESUMEN

Black shank, a devastating disease affecting tobacco production worldwide, is caused by Phytophthora nicotianae. However, few genes related to Phytophthora resistance have been reported in tobacco. Here, we identified NpPP2-B10, a gene strongly induced by P. nicotianae race 0, with a conserved F-box motif and Nictaba (tobacco lectin) domain, in the highly resistant tobacco species Nicotiana plumbaginifolia. NpPP2-B10 is a typical F-box-Nictaba gene. When it was transferred into the black shank-susceptible tobacco cultivar 'Honghua Dajinyuan', it was found to promote resistance to black shank disease. NpPP2-B10 was induced by salicylic acid, and some resistance-related genes (NtPR1, NtPR2, NtCHN50, and NtPAL) and resistance-related enzymes (catalase and peroxidase) were significantly upregulated in the overexpression lines after infection with P. nicotianae. Furthermore, we showed that NpPP2-B10 actively regulated the tobacco seed germination rate, growth rate, and plant height. The erythrocyte coagulation test of purified NpPP2-B10 protein showed that NpPP2-B10 had plant lectin activity, and the lectin content in the overexpression lines was significantly higher than that in the WT, which could lead to accelerated growth and improved resistance of tobacco. SKP1 is an adaptor protein of the E3 ubiquitin ligase SKP1, Cullin, F-box (SCF) complex. We demonstrated that NpPP2-B10 could interact with the NpSKP1-1A gene in vivo and in vitro through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), indicating that NpPP2-B10 likely participates in the plant immune response by mediating the ubiquitin protease pathway. In conclusion, our study provides some important insights concerning NpPP2-B10-mediated regulation of tobacco growth and resistance.


Asunto(s)
Phytophthora , Nicotiana/genética , Lectinas , Enfermedades de las Plantas/genética
9.
Front Plant Sci ; 14: 1154169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025148

RESUMEN

As the formation of adventitious roots (AR) is an important component of in vitro regeneration of tea plants, the propagation and preservation of Huangshan Bitter tea (Camellia gymnogyna Chang) cuttings have been hindered due to its lower rooting rate. As light is a crucial environmental factor that affects AR formation, this study aimed to investigate the special role of red light (RL) in the formation of AR in Huangshan Bitter tea plants, which has not been well understood. Huangshan Bitter tea plants were induced with white light (control, WL) and red light (660 nm, RL) qualities 36 days after induced treatment (DAI) to investigate dynamic AR formation and development, anatomical observation, hormones content change, and weighted gene co-expression network analysis (WGCNA) of the transcriptome. Results showed that RL promoted the rooting rate and root characteristics compared to WL. Anatomical observations demonstrated that root primordium was induced earlier by RL at the 4 DAI. RL positively affected IAA, ZT and GA3 content and negatively influenced ABA from the 4 to 16 DAI. RNA-seq and analysis of differential expression genes (DEGs) exhibited extensive variation in gene expression profiles between RL and WL. Meanwhile, the results of WGCNA and correlation analysis identified three highly correlated modules and hub genes mainly participated in 'response to hormone', 'cellular glucan metabolic progress', and 'response to auxin'. Furthermore, the proportion of transcription factors (TFs) such as ethylene response factor (ERF), myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WRKYGQK (WRKY) were the top four in DEGs. These results suggested that the AR-promoting potential of red light was due to complex hormone interactions in tea plants by regulating the expression of related genes. This study provided an important reference to shorten breeding cycles and accelerate superiority in tea plant propagation and preservation.

10.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108110

RESUMEN

Loquat (Eriobotrya japonica Lindl.) is an evergreen fruit tree of Chinese origin, and its autumn-winter flowering and fruiting growth habit means that its fruit development is susceptible to low-temperature stress. In a previous study, the triploid loquat (B431 × GZ23) has been identified with high photosynthetic efficiency and strong resistance under low-temperature stress. Analysis of transcriptomic and lipidomic data revealed that the fatty acid desaturase gene EjFAD8 was closely associated with low temperatures. Phenotypic observations and measurements of physiological indicators in Arabidopsis showed that overexpressing-EjFAD8 transgenic plants were significantly more tolerant to low temperatures compared to the wild-type. Heterologous overexpression of EjFAD8 enhanced some lipid metabolism genes in Arabidopsis, and the unsaturation of lipids was increased, especially for SQDG (16:0/18:1; 16:0/18:3), thereby improving the cold tolerance of transgenic lines. The expression of ICE-CBF-COR genes were further analyzed so that the relationship between fatty acid desaturase and the ICE-CBF-COR pathway can be clarified. These results revealed the important role of EjFAD8 under low-temperature stress in triploid loquat, the increase expression of FAD8 in loquat under low temperatures lead to desaturation of fatty acids. On the one hand, overexpression of EjFAD8 in Arabidopsis increased the expression of ICE-CBF-COR genes in response to low temperatures. On the other hand, upregulation of EjFAD8 at low temperatures increased fatty acid desaturation of SQDG to maintain the stability of photosynthesis under low temperatures. This study not only indicates that the EjFAD8 gene plays an important role in loquat under low temperatures, but also provides a theoretical basis for future molecular breeding of loquat for cold resistance.


Asunto(s)
Arabidopsis , Eriobotrya , Eriobotrya/metabolismo , Temperatura , Arabidopsis/genética , Diglicéridos/metabolismo , Triploidía , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo
11.
Hortic Res ; 10(2): uhac265, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778182

RESUMEN

Wild loquats (Eriobotrya japonica Lindl.) provide remarkable genetic resources for studying domestication and breeding improved varieties. Herein, we generate the first high-quality chromosome-level genome assembly of wild loquat, with 45 791 predicted protein-coding genes. Analysis of comparative genomics indicated that loquat shares a common ancestor with apple and pear, and a recent whole-genome duplication event occurred in loquat prior to its divergence. Genome resequencing showed that the loquat germplasms can be distinctly classified into wild and cultivated groups, and the commercial cultivars have experienced allelic admixture. Compared with cultivated loquats, the wild loquat genome showed very few selected genomic regions and had higher levels of genetic diversity. However, whole-genome scans of selective sweeps were mainly related to fruit quality, size, and flesh color during the domestication process. Large-scale transcriptome and metabolome analyses were further performed to identify differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in wild and cultivated loquats at various fruit development stages. Unlike those in wild loquat, the key DEGs and DAMs involved in carbohydrate metabolism, plant hormone signal transduction, flavonoid biosynthesis, and carotenoid biosynthesis were significantly regulated in cultivated loquats during fruit development. These high-quality reference genome, resequencing, and large-scale transcriptome/metabolome data provide valuable resources for elucidating fruit domestication and molecular breeding in loquat.

12.
Methods Mol Biol ; 2638: 115-122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781638

RESUMEN

A simple and cost-effective method for genotyping polyploid plants using quantitative PCR (qPCR) is described in this chapter. There is no additional operation, only simultaneous amplification of alleles and reference sequences with constant copy number in the genome. The qPCR genotyping can detect the genotypes of important traits in polyploid plants without whole genome sequencing data.


Asunto(s)
Genoma , Poliploidía , Genotipo , Reacción en Cadena de la Polimerasa/métodos , Plantas/genética , Alelos , Técnicas de Genotipaje/métodos
13.
Front Plant Sci ; 13: 1024515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407616

RESUMEN

The WUSCHEL (WUS)-related homeobox (WOX) gene family plays a crucial role in stem cell maintenance, apical meristem formation, embryonic development, and various other developmental processes. However, the identification and function of WOX genes have not been reported in perennial loquat. In this study, 18 EjWOX genes were identified in the loquat genome. Chromosomal localization analysis showed that 18 EjWOX genes were located on 12 of 17 chromosomes. Gene structure analysis showed that all EjWOX genes contain introns, of which 11 EjWOX genes contain untranslated regions. There are 8 pairs of segmental duplication genes and 0 pairs of tandem duplication genes in the loquat WOX family, suggesting that segmental duplications might be the main reason for the expansion of the loquat WOX family. A WOX transcription factor gene named EjWUSa was isolated from loquat. The EjWUSa protein was localized in the nucleus. Protein interactions between EjWUSa with EjWUSa and EjSTM were verified. Compared with wild-type Arabidopsis thaliana, the 35S::EjWUSa transgenic Arabidopsis showed early flowering. Our study provides an important basis for further research on the function of EjWOX genes and facilitates the molecular breeding of loquat early-flowering varieties.

14.
Front Plant Sci ; 13: 882965, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677248

RESUMEN

Loquat is a widely grown subtropic fruit because of its unique ripening season, nutrient content, and smooth texture of its fruits. However, loquat is not well-received because the fruits contain many large seeds. Therefore, the development of seedless or few-seed loquat varieties is the main objective of loquat breeding. Polyploidization is an effective approach for few-seed loquat breeding, but the resource is rare. The few-seed loquat line H30-6 was derived from a seedy variety. Additionally, H30-6 was systematically studied for its fruit characteristics, gamete fertility, pollen mother cell (PMC) meiosis, stigma receptivity, in situ pollen germination, fruit set, and karyotype. The results were as follows. (1) H30-6 produced only 1.54 seeds per fruit and the fruit edible rate was 70.77%. The fruit setting rate was 14.44% under open pollination, and the other qualities were equivalent to those of two other seedy varieties. (2) The in vitro pollen germination rate was only 4.04 and 77.46% of the H30-6 embryo sacs were abnormal. Stigma receptivity and self-compatibility in H30-6 were verified by in situ pollen germination and artificial pollination. Furthermore, the seed numbers in the fruits of H30-6 did not significantly differ among any of the pollination treatments (from 1.59 ±0.14 to 2 ± 0.17). (3) The chromosome configuration at meiotic diakinesis of H30-6 was 6.87I + 9.99II + 1.07III +0.69IV +0.24V (H30-6), and a total of 89.55% of H30-6 PMCs presented univalent chromosomes. Furthermore, chromosome lagging was the main abnormal phenomenon. Karyotype analysis showed that chromosomes of H30-6 had no recognizable karyotype abnormalities leading to unusual synapsis on the large scale above. (4) The abnormal embryo sacs of H30-6 could be divided into three main types: those remaining in the tetrad stage (13.38%), those remaining in the binucleate embryo sac stage (1.41%), and those without embryo sacs (52.82%). Therefore, we conclude that the loquat line H30-6 is a potential few-seed loquat resource. The diploid loquat line H30-6 was with low gametophyte fertility, which may be driven by abnormal meiotic synapses. The low female gamete fertility was the main reason for the few seeds. This diploid loquat line provides a new possibility for breeding a few-seed loquat at the diploid level.

15.
PLoS One ; 16(11): e0259382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34739505

RESUMEN

Drought stress massively restricts plant growth and the yield of crops. Reducing the deleterious effects of drought is necessary for agricultural industry. The plant-specific NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are widely involved in the regulation of plant development and stress response. One of the NAC TF, JUNGBRUNNEN1 (JUB1), has been reported to involve in drought resistance in Arabidopsis. However, little is known of how the JUB1 gene respond to drought stress in cotton. In the present study, we cloned GhJUB1L1, a homologous gene of JUB1 in upland cotton. GhJUB1L1 is preferentially expressed in stem and leaf and could be induced by drought stress. GhJUB1L1 protein localizes to the cell nucleus, and the transcription activation region of which is located in the C-terminal region. Silencing GhJUB1L1 gene via VIGS () reduced cotton drought tolerance, and retarded secondary cell wall (SCW) development. Additionally, the expression of some drought stress-related genes and SCW synthesis-related genes were altered in the GhJUB1L1 silencing plants. Collectively, our findings indicate that GhJUB1L1 may act as a positive regulator in response to drought stress and SCW development in cotton. Our results enriched the roles of NAC TFs in cotton drought tolerance and laid a foundation for the cultivation of transgenic cotton with higher drought tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Gossypium/genética , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequías , Silenciador del Gen/fisiología , Gossypium/crecimiento & desarrollo , Desarrollo de la Planta , Hojas de la Planta , Factores de Transcripción/genética
16.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2703-2718, 2021 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-34472290

RESUMEN

Plants with alien genomic components (alien chromosomes / chromosomal fragments / genes) are important materials for genomic research and crop improvement. To date, four strategies based on trait observation, chromosome analysis, specific proteins, and DNA sequences have been developed for the identification of alien genomic components. Among them, DNA sequence-based molecular markers are mainly used to identify alien genomic components. This review summarized several molecular markers for identification of alien genomic components in wheat, cabbage and other important crops. We also compared the characteristics of nine common molecular markers, such as simple sequence repeat (SSR), insertion-deletion (InDel) and single nucleotide polymorphism (SNP). In general, the accuracy of using a combination of different identification methods is higher than using a single identification method. We analyzed the application of different combination of identification methods, and provided the best combination for wheat, brassica and other crops. High-throughput detection can be easily achieved by using the new generation molecular markers such as InDel and SNP, which can be used to determine the precise localization of alien introgression genes. To increase the identification efficiency, other new identification methods, such as microarray comparative genomic hybridization (array-CGH) and suppression subtractive hybridization (SSH), may also be included.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Hibridación Genómica Comparativa , Genoma de Planta/genética , Genómica , Triticum/genética
17.
Plant Methods ; 17(1): 93, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479588

RESUMEN

BACKGROUND: Ploidy manipulation is effective in seedless loquat breeding, in which flesh color is a key agronomic and economic trait. Few techniques are currently available for detecting the genotypes of polyploids in plants, but this ability is essential for most genetic research and molecular breeding. RESULTS: We developed a system for genotyping by quantitative PCR (qPCR) that allowed flesh color genotyping in multiple tetraploid and triploid loquat varieties (lines). The analysis of 13 different ratios of DNA mixtures between two homozygous diploids (AA and aa) showed that the proportion of allele A has a high correlation (R2 = 0.9992) with parameter b [b = a1/(a1 + a2)], which is derived from the two normalized allele signals (a1 and a2) provided by qPCR. Cluster analysis and variance analysis from simulating triploid and tetraploid hybrids provided completely correct allelic configurations. Four genotypes (AAA, AAa, Aaa, aaa) were found in triploid loquats, and four (AAAA, AAAa, AAaa, Aaaa; absence of aaaa homozygotes) were found in tetraploid loquats. DNA markers analysis showed that the segregation of flesh color in all F1 hybrids conformed to Mendel's law. When tetraploid B431 was the female parent, more white-fleshed triploids occurred among the progeny. CONCLUSIONS: qPCR can detect the flesh color genotypes of loquat polyploids and provides an alternative method for analyzing polyploid genotype and breeding, dose effects and allele-specific expression.

18.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070474

RESUMEN

The WRKY gene family, which is one of the largest transcription factor (TF) families, plays an important role in numerous aspects of plant growth and development, especially in various stress responses. However, the functional roles of the WRKY gene family in loquat are relatively unknown. In this study, a novel WRKY gene, EjWRKY17, was characterized from Eriobotrya japonica, which was significantly upregulated in leaves by melatonin treatment during drought stress. The EjWRKY17 protein, belonging to group II of the WRKY family, was localized in the nucleus. The results indicated that overexpression of EjWRKY17 increased cotyledon greening and root elongation in transgenic Arabidopsis lines under abscisic acid (ABA) treatment. Meanwhile, overexpression of EjWRKY17 led to enhanced drought tolerance in transgenic lines, which was supported by the lower water loss, limited electrolyte leakage, and lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Further investigations showed that overexpression of EjWRKY17 promoted ABA-mediated stomatal closure and remarkably up-regulated ABA biosynthesis and stress-related gene expression in transgenic lines under drought stress. Overall, our findings reveal that EjWRKY17 possibly acts as a positive regulator in ABA-regulated drought tolerance.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Eriobotrya/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Sequías , Eriobotrya/efectos de los fármacos , Eriobotrya/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malondialdehído/metabolismo , Melatonina/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética , Regulación hacia Arriba , Agua/metabolismo
19.
BMC Plant Biol ; 21(1): 98, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596836

RESUMEN

BACKGROUND: Plants have remarkable diversity in petal colour through the biosynthesis and accumulation of various pigments. To better understand the mechanisms regulating petal pigmentation in Lonicera japonica, we used multiple approaches to investigate the changes in carotenoids, anthocyanins, endogenous hormones and gene expression dynamics during petal colour transitions, i.e., green bud petals (GB_Pe), white flower petals (WF_Pe) and yellow flower petals (YF_Pe). RESULTS: Metabolome analysis showed that YF_Pe contained a much higher content of carotenoids than GB_Pe and WF_Pe, with α-carotene, zeaxanthin, violaxanthin and γ-carotene identified as the major carotenoid compounds in YF_Pe. Comparative transcriptome analysis revealed that the key differentially expressed genes (DEGs) involved in carotenoid biosynthesis, such as phytoene synthase, phytoene desaturase and ζ-carotene desaturase, were significantly upregulated in YF_Pe. The results indicated that upregulated carotenoid concentrations and carotenoid biosynthesis-related genes predominantly promote colour transition. Meanwhile, two anthocyanins (pelargonidin and cyanidin) were significantly increased in YF_Pe, and the expression level of an anthocyanidin synthase gene was significantly upregulated, suggesting that anthocyanins may contribute to vivid yellow colour in YF_Pe. Furthermore, analyses of changes in indoleacetic acid, zeatin riboside, gibberellic acid, brassinosteroid (BR), methyl jasmonate and abscisic acid (ABA) levels indicated that colour transitions are regulated by endogenous hormones. The DEGs involved in the auxin, cytokinin, gibberellin, BR, jasmonic acid and ABA signalling pathways were enriched and associated with petal colour transitions. CONCLUSION: Our results provide global insight into the pigment accumulation and the regulatory mechanisms underlying petal colour transitions during the flower development process in L. japonica.


Asunto(s)
Flores/metabolismo , Lonicera/genética , Pigmentos Biológicos/biosíntesis , Color , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Lonicera/crecimiento & desarrollo , Lonicera/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
20.
PLoS One ; 15(10): e0239382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33031442

RESUMEN

Floral initiation plays a critical role for reproductive success in plants, especially fruit trees. However, little information is known on the mechanism of the initiation in loquat (Eriobotrya japonica Lindl.). Here, we used transcriptomic, expression and functional analysis to investigate the candidate genes in floral initiation in loquat. Comparative transcriptome analysis showed differentially expressed genes (DEGs) were mainly enriched in the metabolic pathways of plant hormone signal transduction. The DEGs were mainly involved in the gibberellin, auxin, cytokinin, abscisic acid, salicylic acid and ethylene signaling pathways. Meanwhile, some transcription factors, including MADS-box (MCM1, AGAMOUS, DEFICIENS and SRF), MYB (Myeloblastosis), TCP (TEOSINTE BRANCHED 1, CYCLOIDEA and PCF1), WOX (WUSCHEL-related homeobox) and WRKY (WRKY DNA-binding protein), were significantly differentially expressed. Among these key DEGs, we confirmed that an AGL17 ortholog EjAGL17 was significantly upregulated at the flower bud transition stage. Phylogenetic tree analysis revealed that EjAGL17 was grouped into an AGL17 clade of MADS-box transcription factors. Protein sequence alignment showed that EjAGL17 included a distinctive C-terminal domain. Subcellular localization of EjAGL17 was found only in the nucleus. Expression levels of EjAGL17 reached the highest at the development stage of flower bud transition. Moreover, ectopic expression of EjAGL17 in Arabidopsis significantly exhibited early flowering. Our study provides abundant resources of candidate genes for studying the mechanisms underlying the floral initiation in loquat and other Rosaceae species.


Asunto(s)
Eriobotrya/crecimiento & desarrollo , Eriobotrya/genética , Flores/crecimiento & desarrollo , Flores/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Eriobotrya/citología , Eriobotrya/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte de Proteínas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA