Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(25): 32543-32553, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861471

RESUMEN

Electrophoretic displays (EPDs) based on photonic crystals show great potential due to their reduced eye fatigue and low power consumption. However, the current image quality and service life of this system still face great challenges. In this work, we fabricated a new kind of electrically responsive photonic crystal (ERPC) device based on PSMA@SiO2 liquid colloidal crystals (LCCs) for EPDs. By introduction of the PSMA core with lower density and higher refractive index, the suspension stability and color saturation of PSMA@SiO2 LCCs were greatly enhanced compared with those of bare SiO2 LCCs. The PSMA@SiO2 LCCs showed brilliant colors, wide color tuning range (∼200 nm), and good reversibility under low voltages (<4 V). Interestingly, the transparency of PSMA@SiO2 LCCs could also be obviously regulated by an electric field, which was different from the traditional ways that change the thickness of PCs or contrast of refractive index (Δn) between the nanospheres and matrix. This transparency modulation offered a novel idea for the transmittance control of smart windows. As a proof of concept, we fabricated a new type of patterned ERPC device to demonstrate their potential in electrophoretic displays and smart windows with controllable transmittance under an electric field.

2.
J Mater Chem B ; 12(20): 4899-4908, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38682549

RESUMEN

Rapid extraction and screening of high-purity DNA fragments is an indispensable technology in advanced molecular biology. In this article, mesoporous magnetic composite microspheres (MSP@mTiO2) with tunable pore sizes were successfully fabricated for high-purity DNA extraction and fragment screening. Owing to the strong complexation ability of Ti ions with DNA phosphate groups and the high specific surface area of mesoporous microspheres, the MSP@mTiO2 microspheres possess excellent adsorption performance, where the saturated loading capacity of MSP@mTiO2 with a specific surface area of 122 m2 g-1 is as high as 575 µg mg-1 for a salmon sperm specimen. ITC experiments demonstrated that DNA adsorption on MSP@mTiO2 microspheres is mainly driven by entropy, which gives us more potential ways to regulate the balance of adsorption and desorption. Meanwhile, the mesoporous MSP@mTiO2 microspheres exhibit a much higher extraction efficiency compared with non-porous MSP@TiO2 for whole genome DNA from Arabidopsis thaliana plants. Interestingly, DNA fragments with different lengths could be screened by simply regulating the pore size of MSP@mTiO2 or the concentration of Na3PO4 in the eluent. A small pore size and low phosphate concentration are advantageous for the extraction of short-stranded DNA fragments, and DNA fragments (≤1000 bp) can be efficiently extracted when the mesopore size of MSP@mTiO2 is lower than 7.6 nm. The extraction results from the mesoporous composite microspheres provide new promising insights into the purification and screening of DNA from complex biological samples.


Asunto(s)
ADN , Microesferas , Titanio , Porosidad , Titanio/química , ADN/química , Animales , Tamaño de la Partícula , Adsorción , Propiedades de Superficie , Arabidopsis , Salmón , Masculino , Espermatozoides/química
3.
Materials (Basel) ; 17(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276449

RESUMEN

In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser interacts with metal, and their morphologies play an important role in defect formation and the final product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole shapes with defects using machine learning. However, such labeling is tedious, time-consuming, error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper, a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of X-ray images is presented. The pipeline contains a filtering method and an implementation of the BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images. The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with 300 training images/labels and 100 testing images for each trial. Prospective users may apply the presently trained tool or a retrained version following the approach used here to automatically label keyhole shapes in large image sets.

4.
Nanoscale ; 15(46): 18825-18831, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37965806

RESUMEN

In this work, structural color inks with practical significance in anti-counterfeiting applications have been successfully manufactured by facilely mixing SiO2@PDA@PHEMA hybrid colloidal particles with the mediated molecules of HEMA. The appropriate rheological properties of these photonic inks provide high viscosity and self-supporting performance, ensuring sufficient interaction between particles to form short-range ordered arrays during the mixing and shearing process and thus generating non-iridescent colors. The strong and broad uniform light absorption capabilities of polydopamine (PDA) not only suppress the incoherent multiple scattering of the photonic inks, but also impart surprising optical anti-counterfeiting properties, i.e. black color under ambient illumination and dazzling reflective coloration under strong illumination. With the 3D printing technique, complicated angle-independent patterns with visualization and high fidelity are expected to be fabricated with the as-prepared photonic inks for real-life applications in smart anti-counterfeiting labels, thus encoding encrypted information and selective color rendering accessories.

5.
ACS Appl Mater Interfaces ; 15(36): 42170-42181, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37654059

RESUMEN

Magnetic-assisted DNA testing technology has attracted much attention in genetics, clinical diagnostics, environmental microbiology, and molecular biology. However, achieving satisfying DNA adsorption and desorption efficiency in real samples is still a big challenge. In this paper, a new kind of high-quality magnetic composite microsphere of MM@PGMA-PA-Ti4+ was designed and prepared for DNA extraction and detection based on the strong interaction of Ti4+ and phosphate groups. By taking the advantages of high magnetic susceptibility and high Ti4+ content, the MM@PGMA-PA-Ti4+ microspheres possessed remarkable extraction capacity for mimic biological samples (salmon sperm specimens) with saturated loadings up to 533.0 mg/g. When the DNA feeding amount was 100 µg and the MM@PGMA-PA-Ti4+ dosage was 1 mg, the adsorption and desorption efficiencies were 80 and 90%, respectively. The kinetic and equilibrium extraction data were found to fit well with the pseudo-second-order model and Freundlich isotherm model. Furthermore, the MM@PGMA-PA-Ti4+ microspheres were successfully employed for DNA extraction from mouse epithelial-like fibroblasts. The extraction ability (84 ± 4 µg/mg) and DNA purity were superior to the comparative commercial spin kits, as evaluated by electrophoresis assays and qPCR analysis. The experimental results suggest that the MM@PGMA-PA-Ti4+ microspheres possess great potential as an adsorbent for DNA purification from complex biological samples.


Asunto(s)
Semen , Titanio , Masculino , Animales , Ratones , Microesferas , Cationes , Fenómenos Magnéticos
6.
J Neurochem ; 164(6): 764-785, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36084044

RESUMEN

The chaperon protein sigma-1 receptor (S1R) has been discovered over 40 years ago. Recent pharmacological studies using S1R exogenous ligands demonstrated a promising therapeutical potential of targeting the S1R in several neurological disorders. Although intensive in vitro studies have revealed S1Rs are mainly residing at the membrane of the endoplasmic reticulum (ER), the cell-specific in vivo expression pattern of S1Rs is still unclear, mainly because of the lack of a reliable detection method which also prevented a comprehensive functional analysis. Here, first, we identified a highly specific antibody using S1R knockout (KO) mice and established an immunohistochemical protocol involving a 1% sodium dodecyl sulphate (SDS) antigen retrieval step. Second, we characterized the S1R expression in the mouse brain and can demonstrate that the S1R is widely expressed: in principal neurons, interneurons and all glial cell types. In addition, unlike reported in previous studies, we showed that the S1R expression in astrocytes is not colocalized with the astrocytic cytoskeleton protein GFAP. Thus, our results raise concerns over previously reported S1R properties. Finally, we generated a Cre-dependent S1R conditional KO mouse (S1R flox) to study cell-type-specific functions of the S1R. As a proof of concept, we successfully ablated S1R expressions in neurons or microglia employing neuronal and microglial Cre-expressing mice, respectively. In summary, we provide powerful tools to cell-specifically detect, delete and functionally characterize S1R in vivo.


Asunto(s)
Neuronas , Receptores sigma , Ratones , Animales , Neuronas/metabolismo , Neuroglía/metabolismo , Receptores sigma/genética , Astrocitos/metabolismo , Ratones Noqueados , Receptor Sigma-1
7.
Angew Chem Int Ed Engl ; 61(34): e202206723, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35718747

RESUMEN

Biodegradable photonic microspheres with structural colors are promising substitutes to polluting microbeads and toxic dyes. Here, amphiphilic polyester-block-poly(ethylene glycol) bottlebrush block copolymers (BBCPs) with polylactic acid or poly(ϵ-caprolactone) as the hydrophobic block are synthesized and used to fabricate eco-friendly photonic pigments. Molecular parameters of BBCPs, including rigidity and symmetry, are precisely tailored by variation of side chain lengths, which enables effective manipulation of interfacial tension (γ). Organized spontaneous emulsion mechanism is enabled only when γ falls in a suitable range (10.6-14.3 mN m-1 ), producing ordered water-in-oil-in-water multiple emulsions and ordered porous structures. Consequently, highly saturated and tunable structural colors are observed due to coherent light scattering from the porous structures. Such photonic materials are nontoxic as confirmed by careful safety tests using aquatic model organisms.


Asunto(s)
Poliésteres , Polietilenglicoles , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Poliésteres/química , Polietilenglicoles/química , Polímeros/química , Agua/química
8.
Rev Sci Instrum ; 93(4): 043707, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489882

RESUMEN

In powder-bed-based metal additive manufacturing (AM), the visualization and analysis of the powder spreading process are critical for understanding the powder spreading dynamics and mechanisms. Unfortunately, the high spreading speeds, the small size of the powder, and the opacity of the materials present a great challenge for directly observing the powder spreading behavior. Here, we report a compact and flexible powder spreading system for in situ characterization of the dynamics of the powders during the spreading process by high-speed x-ray imaging. The system enables the tracing of individual powder movement within the narrow gap between the recoater and the substrate at variable spreading speeds from 17 to 322 mm/s. The instrument and method reported here provide a powerful tool for studying powder spreading physics in AM processes and for investigating the physics of granular material flow behavior in a confined environment.

9.
Nat Commun ; 13(1): 1079, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228541

RESUMEN

The process instabilities intrinsic to the localized laser-powder bed interaction cause the formation of various defects in laser powder bed fusion (LPBF) additive manufacturing process. Particularly, the stochastic formation of large spatters leads to unpredictable defects in the as-printed parts. Here we report the elimination of large spatters through controlling laser-powder bed interaction instabilities by using nanoparticles. The elimination of large spatters results in 3D printing of defect lean sample with good consistency and enhanced properties. We reveal that two mechanisms work synergistically to eliminate all types of large spatters: (1) nanoparticle-enabled control of molten pool fluctuation eliminates the liquid breakup induced large spatters; (2) nanoparticle-enabled control of the liquid droplet coalescence eliminates liquid droplet colliding induced large spatters. The nanoparticle-enabled simultaneous stabilization of molten pool fluctuation and prevention of liquid droplet coalescence discovered here provide a potential way to achieve defect lean metal additive manufacturing.

11.
ACS Omega ; 7(8): 7304-7310, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252720

RESUMEN

The effect of Y intercalation on the atomic, electronic, and magnetic properties of the graphene/Co(0001) interface is studied using state-of-the-art density functional theory calculations. Different structural models of the graphene/Y/Co(0001) interface are considered: (i) graphene/Y/Co(0001), (ii) graphene/1ML-YCo2/Co(0001), and (iii) graphene/bulk-like-YCo2(111). It is found that the interaction strength between graphene and the substrate is strongly affected by the presence of Y at the interface and the electronic structure of graphene (doping and the appearance of the energy gap) is defined by the Y concentration. For the Co-terminated interfaces between graphene and the metallic support in the considered systems, the electronic structure of graphene is strongly disturbed, leading to the absence of the linear dispersion for the graphene π band; in the case of the Y-terminated interfaces, a graphene layer is strongly n-doped, but the linear dispersion for this band is preserved. Our calculations show that the magnetic anisotropy for the magnetic atoms at the graphene/metal interface is strongly affected by the adsorption of a graphene layer, giving a possibility for one to engineer the magnetic properties of the graphene/ferromagnet systems.

12.
Materials (Basel) ; 15(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35160651

RESUMEN

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by a revolution powder analyzer). The effects of PSDs on the selective laser melting (SLM) process are identified by using in-situ high-speed X-ray imaging to observe the melt pool dynamics during the melting process. The results show that the powder beds made of powders with dense packing ratios exhibit larger build height during laser melting. The effects of PSD with efficient packing on powder flowability and selective laser melting process revealed in this work are important for understanding process uncertainties induced by feedstock powders and for designing mitigation approaches.

13.
Materials (Basel) ; 15(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35057247

RESUMEN

Selective laser melting (SLM) additive manufacturing (AM) exhibits uncertainties, where variations in build quality are present despite utilizing the same optimized processing parameters. In this work, we identify the sources of uncertainty in SLM process by in-situ characterization of SLM dynamics induced by small variations in processing parameters. We show that variations in the laser beam size, laser power, laser scan speed, and powder layer thickness result in significant variations in the depression zone, melt pool, and spatter behavior. On average, a small deviation of only ~5% from the optimized/reference laser processing parameter resulted in a ~10% or greater change in the depression zone and melt pool geometries. For spatter dynamics, small variation (10 µm, 11%) of the laser beam size could lead to over 40% change in the overall volume of the spatter generated. The responses of the SLM dynamics to small variations of processing parameters revealed in this work are useful for understanding the process uncertainties in the SLM process.

14.
Angew Chem Int Ed Engl ; 61(5): e202113759, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34859551

RESUMEN

Artificial self-assembly systems typically exhibit limited capability in creating nature-inspired complex materials with advanced functionalities. Here, an effective co-assembly strategy is demonstrated for the facile creation of complex photonic structures with intriguing light reflections. Two different lipophilic and amphiphilic bottlebrush block copolymers (BCPs) are placed within shrinking droplets to enable a cooperative working mechanism of microphase segregation and organized spontaneous emulsification, respectively. Layer assemblies of the lipophilic BCP and uniform water nanodroplets stabilized by the bottlebrush surfactant are both generated, and co-assembled into a bridged lamellar structure with the alternating arrangement of layers and closely packed nanodroplet arrays. Janus microspheres with diverse dual optical characteristics are successfully fabricated, and reflected wavelengths of light are highly tunable simply by changing the formulation or molecular weight of BCP.

15.
Front Pharmacol ; 12: 754387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867366

RESUMEN

Atherosclerotic cardiovascular disease is a common and severe complication of diabetes. There is a large need to identify the effective and safety strategies on diabetic cardiovascular disease (DCVD). 9-PAHSA is a novel endogenous fatty acid, and has been reported to reduce blood glucose levels and attenuate inflammation. We aim to evaluate the effects of 9-PAHSA on DCVD and investigate the possible mechanisms underlying it. Firstly, serum 9-PAHSA levels in human were detected by HPLC-MS/MS analysis. Then 9-PAHSA was synthesized and purified. The synthesized 9-PAHSA was gavaged to db/db mice with 50 mg/kg for 4 weeks. The carotid arterial plaque and cardiac structure was assessed by ultrasound. Cardiac autophagy was tested by western blot analysis, electron microscope and iTRAQ. The results showed that 9-PAHSA, in patients with type 2 diabetes mellitus (T2DM), was significantly lower than that in non-diabetic subjects. Administration of 9-PAHSA for 2 weeks reduced blood glucose levels. Ultrasound observed that continue administration of 9-PAHSA for 4 weeks ameliorated carotid vascular calcification, and attenuated myocardial hypertrophy and dysfunction in db/db mice. Electron microscopy showed continue 9-PAHSA treatment significantly increased autolysosomes, while dramatically decreased greases in the myocardial cells of the db/db mice. Moreover, iTRAQ analysis exhibited that continue 9-PAHSA treatment upregulated BAG3 and HSPB8. Furthermore, western blot analysis confirmed that 9-PAHSA down-regulated Akt/mTOR and activated PI3KIII/BECN1 complex in diabetic myocardium. Thus, 9-PAHSA benefits DCVD in diabetic mice by ameliorating carotid vascular calcification, promoting autophagic flux and reducing myocardial hypertrophy.

16.
Nanoscale ; 13(46): 19642-19649, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816855

RESUMEN

Cu is well-known to adopt a face-centered cubic (fcc) structure in the bulk phase. Ligand-stabilized Cu nanoclusters (NCs) with atomically precise structures are an emerging class of nanomaterials. However, it remains a great challenge to have non-fcc structured Cu NCs. In this contribution, we report the syntheses and total structure determination of six 28-nuclearity polyhydrido Cu NCs: [Cu28H16(dppp)4(RS)4(CF3CO2)8] (dppp = 1,3-bis(diphenylphosphino)propane, RSH = cyclohexylthiol, 1; tert-butylthiol, 3; and 2-thiophenethiol, 4) and [Cu28H16(dppe)4(RS)4(CH3CO2)6Cl2] (dppe = 1,2-bis(diphenylphosphino)ethane, RSH = (4-isopropyl)thiophenol, 2; 4-tert-butylbenzenethiol, 5; and 4-tert-butylbenzylmercaptan, 6). Their well-defined structures solved by X-ray single crystal diffraction reveal that these 28-Cu NCs are isostructural, and the overall metal framework is arranged as a sandwich structure with a core-shell Cu2@Cu16 unit held by two Cu5 fragments. One significant finding is that the organization of 18 Cu atoms in the Cu2@Cu16 could be regarded as an incomplete and distorted version of 3 × 2 × 2 "cutout" of the body-centered cubic (bcc) bulk phase, which was strikingly different to the fcc structure of bulk Cu. The bcc framework came as a surprise, as no bcc structures have been previously observed in Cu NCs. A comparison with the ideal bcc arrangement of 18 Cu atoms in the bcc lattice suggests that the distortion of the bcc structure results from the insertion of interstitial hydrides. The existence, number, and location of hydrides in these polyhydrido Cu NCs are established by combined experimental and DFT results. These results have significant implications for the development of high-nuclearity Cu hydride NCs with a non-fcc architecture.

17.
Materials (Basel) ; 14(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072400

RESUMEN

Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly contain pores, which degrade their mechanical properties. In this study, we reveal pore formation mechanisms during PW-LPBF in real time by using an in-situ high-speed synchrotron x-ray imaging technique. We found that vapor depression collapse proceeds when the laser irradiation stops within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that the melt ejection and rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and subsequent formation of a pore pattern in the melted track. The pore formation dynamics revealed here may provide guidance on developing pore elimination approaches.

18.
CNS Neurosci Ther ; 27(4): 484-496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33459523

RESUMEN

AIMS: Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5-PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic-related neurodegeneration. The aim of the present study was to investigate whether 5-PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy. METHODS: 5-PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5-PAHSA for 24 h, while mice were administered with 5-PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors. RESULTS: Although there was no significant improvement in glucose metabolism in mice administered with 5-PAHSA, ox-LDL decreased significantly following the administration of 5-PAHSA in serum of DB/DB mice (p < 0.0001). We also found that the phosphorylation of m-TOR and ULK-1 was suppressed in both PC12 cells and DB/DB mice following the administration of 5-PAHSA (p < 0.05 and p < 0.01), although increased levels of autophagy were only observed in vitro (p < 0.05). Following the administration of 5-PAHSA, the concentration of ROS decreased in PC12 cells and the levels of CRP increased in high-dose group of 5-PAHSA (p < 0.01). There were no significant changes in terms of apoptosis, other inflammatory factors, or cognition in DB/DB mice following the administration of 5-PAHSA. CONCLUSION: We found that 5-PAHSA can enhance autophagy in PC12 cells under diabetic conditions. Our data demonstrated that 5-PAHSA inhibits phosphorylation of the m-TOR-ULK1 pathway and suppressed oxidative stress in PC12 cells, and exerted influence on lipid metabolism in DB/DB mice.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Palmítico/farmacología , Ácidos Esteáricos/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Células PC12 , Ácido Palmítico/uso terapéutico , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ácidos Esteáricos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo
19.
Neural Regen Res ; 16(1): 43-48, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32788446

RESUMEN

In the mammalian central nervous system, nerve-glia antigen 2 (NG2) glia are considered the fourth glial population in addition to astrocytes, oligodendrocytes and microglia. The fate of NG2 glia in vivo has been carefully studied in several transgenic mouse models using the Cre/loxP strategy. There is a clear agreement that NG2 glia mainly serve as progenitors for oligodendrocytes and a subpopulation of astrocytes mainly in the ventral forebrain, whereas the existence of a neurogenic potential of NG2 glia is lack of adequate evidence. This mini review summarizes the findings from recent studies regarding the fate of NG2 glia during development. We will highlight the age-and-region-dependent heterogeneity of the NG2 glia differentiation potential. We will also discuss putative reasons for inconsistent findings in various transgenic mouse lines of previous studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...