Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812381

RESUMEN

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Asunto(s)
Corteza Auditiva , Electroencefalografía , Potenciales Evocados Auditivos , Magnetoencefalografía , Humanos , Magnetoencefalografía/instrumentación , Potenciales Evocados Auditivos/fisiología , Corteza Auditiva/fisiología , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Adulto , Masculino
2.
J Neurosci Methods ; 346: 108948, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950554

RESUMEN

BACKGROUND: Magnetoencephalography (MEG) has high temporal and spatial resolution and good spatial accuracy in determining the locations of source activity among most non-invasive imaging. The recently developed technology of optically-pumped magnetometer (OPM) has sensitivity comparable to that of the superconducting quantum interference device (SQUID) used in commercial MEG system. NEW METHOD: Double-channel OPM-MEG system detects human photic blocking of alpha rhythm at the occipital region of skull in the magnetically shielded environment via a wearable whole-cortex 3D-printed helmet. RESULTS: The alpha rhythm can be detected by the OPM-MEG system, the MEG signals are undoubtedly caused by photic blocking and similar with the results measured by SQUID magnetometer. COMPARISON WITH EXISTING METHODS: Due to the dependency of current commercial whole-cortex SQUID-MEG system on the liquid helium, the separation from the liquid helium space to the human head is usually at least a few centimeters. The wearable OPM-MEG system, however, can significantly improve the detection efficiency since its sensors can be mounted close to scalp, normally less than 1 cm. CONCLUSIONS: OPM-MEG system successfully detects alpha rhythm blocked by light stimulation and works well in the home-made magnetically shielded environment. OPM-MEG system shows a substitute for the traditional MEG system.


Asunto(s)
Magnetoencefalografía , Lóbulo Occipital , Ritmo alfa , Corteza Cerebral , Humanos , Cuero Cabelludo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...