Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Dev Comp Immunol ; 159: 105222, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964676

RESUMEN

Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.

3.
Biomed Chromatogr ; : e5900, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937935

RESUMEN

Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.

4.
ACS Appl Mater Interfaces ; 16(22): 28041-28055, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767982

RESUMEN

Bacterial infection poses a significant challenge to wound healing and skin regeneration, leading to substantial economic burdens on patients and society. Therefore, it is crucial to promptly explore and develop effective methodologies for bacterial infections. Herein, we propose a novel approach for synthesizing nanostructures based on antisense oligonucleotides (ASOs) through the coordination-driven self-assembly of Zn2+ with ASO molecules. This approach aims to provide effective synergistic therapy for chronic wound infections caused by Staphylococcus aureus (S. aureus). The resulting hybrid nanoparticles successfully preserve the structural integrity and biological functionalities of ASOs, demonstrating excellent ASO encapsulation efficiency and bioaccessibility. In vitro antibacterial experiments reveal that Zn-ASO NPs exhibit antimicrobial properties against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. This antibacterial ability is attributed to the high concentration of metal zinc ions and the generation of high levels of reactive oxygen species. Additionally, the ftsZ-ASO effectively inhibits the expression of the ftsZ gene, further enhancing the antimicrobial effect. In vivo antibacterial assays demonstrate that the Zn-ASO NPs promote optimal skin wound healing and exhibit favorable biocompatibility against S. aureus infections, resulting in a residual infected area of less than 8%. This combined antibacterial strategy, which integrates antisense gene therapy and metal-coordination-directed self-assembly, not only achieves synergistic and augmented antibacterial outcomes but also expands the horizons of ASO coordination chemistry. Moreover, it addresses the gap in the antimicrobial application of metal-coordination ASO self-assembly, thereby advancing the field of ASO-based therapeutic approaches.


Asunto(s)
Antibacterianos , Oligonucleótidos Antisentido , Staphylococcus aureus , Zinc , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Zinc/química , Zinc/farmacología , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Animales , Ratones , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Bacillus subtilis/efectos de los fármacos , Humanos , Cicatrización de Heridas/efectos de los fármacos
5.
Cell Death Discov ; 10(1): 265, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816377

RESUMEN

Ferroptosis represents a form of programmed cell death that is propelled by iron-dependent lipid peroxidation, thereby being distinguished by the prominent features of iron accumulation and lipid peroxidation. Ferroptosis has been implicated in numerous physiological and pathological phenomena, with mounting indications that it holds significant implications for cancer and other medical conditions. On one side, it demonstrates anti-cancer properties by triggering ferroptosis within malignant cells, and on the other hand, it damages normal cells causing other diseases. Therefore, in this paper, we propose to review the paradoxical regulation of ferroptosis in tumors and other diseases. First, we introduce the development history, concept and mechanism of ferroptosis. The second part focuses on the methods of inducing ferroptosis in tumors. The third section emphasizes the utilization of ferroptosis in different medical conditions and strategies to inhibit ferroptosis. The fourth part elucidates the key contradictions in the control of ferroptosis. Finally, potential research avenues in associated domains are suggested.

6.
Int J Biol Macromol ; 270(Pt 1): 132277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735611

RESUMEN

The high-glycemic microenvironment of diabetic wounds promotes bacterial proliferation, leading to persistent infections and delayed wound healing. This poses a significant threat to human health, necessitating the development of new nanodrug visualization platforms. In this study, we designed and synthesized cascade nano-systems modified with targeted peptide and hyaluronic acid for diabetic infection therapy. The nano-systems were able to target the site of infection using LL-37, and in the microenvironment of wound infection, the hyaluronic acid shell of the nano-systems was degraded by endogenous hyaluronidase. This precise degradation released a cascade of nano-enzymes on the surface of the bacteria, effectively destroying their cytoskeleton. Additionally, the metals in the nano-enzymes provided a photo-thermal effect, accelerating wound healing. The cascade nano-visualization platform demonstrated excellent bactericidal efficacy in both in vitro antimicrobial assays and in vivo diabetic infection models. In conclusion, this nano-system employs multiple approaches including targeting, enzyme-catalyzed therapy, photothermal therapy, and chemodynamic therapy to kill bacteria and promote healing. The Ag@Pt-Au-LYZ/HA-LL-37 formulation shows great potential for the treatment of diabetic wounds.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Ácido Hialurónico , Cicatrización de Heridas , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Ratones , Diabetes Mellitus Experimental , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Hialuronoglucosaminidasa/metabolismo , Catelicidinas , Humanos , Complicaciones de la Diabetes/tratamiento farmacológico , Nanopartículas/química
7.
J Adv Res ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821357

RESUMEN

Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.

8.
RSC Adv ; 14(15): 10608-10637, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38567339

RESUMEN

Nanoparticle (NP) drug delivery systems have shown promise in tumor therapy. However, limitations such as susceptibility to immune clearance and poor targeting in a complex intercellular environment still exist. Recently, cancer cell membrane-encapsulated nanoparticles (CCM-NPs) constructed using biomimetic nanotechnology have been developed to overcome these problems. Proteins on the membrane surface of cancer cells can provide a wide range of activities for CCM-NPs, including immune escape and homologous cell recognition properties. Meanwhile, the surface of the cancer cell membrane exhibits obvious antigen enrichment, so that CCM-NPs can transmit tumor-specific antigen, activate a downstream immune response, and produce an effective anti-tumor effect. In this review, we first provided an overview of the functions of cancer cell membranes and summarized the preparation techniques and characterization methods of CCM-NPs. Then, we focused on the application of CCM-NPs in tumor therapy. In addition, we summarized the functional modifications of cancer cell membranes and compiled the patent applications related to CCM-NPs in recent years. Finally, we proposed the future challenges and directions of this technology in order to provide guidance for researchers in this field.

9.
Chin Med ; 19(1): 54, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528546

RESUMEN

OBJECTIVE: To determine the pharmacodynamic mechanism underlying Cordyceps sinensis relief in a murine model of non-small cell lung cancer (NSCLC). METHODS: We created a murine model of NSCLC and studied the potential molecular mechanism by which C. sinensis relieved NSCLC using a combination of transcriptomics, proteomics, and experimental validation. RESULTS: C. sinensis markedly suppressed the fluorescence values in mice with NSCLC, improved the pathologic morphology of lung tissue, ameliorated inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and the oxidative stress indicators superoxide dismutase, malondialdehyde, and glutathione peroxidase). Transcriptomics results showed that the therapeutic effect of C. sinensis was primarily involved in the differentiation and activation of T cells. Based on the proteomic results, C. sinensis likely exerted a protective effect by recruiting immune cells and suppressing tumor cell proliferation via the MAPK pathway. Finally, the experimental validation results indicated that C. sinensis significantly decreased the VEGF and Ki67 expression, downregulated RhoA, Raf-1, and c-fos expression, which are related to cell migration and invasion, increased the serum concentration of hematopoietic factors (EPO and GM-CSF), and improved the percentage of immune cells (natural killer cells, dendritic cells, and CD4+ and CD8+ lymphocytes), which enhanced immune function. CONCLUSIONS: Based on our preclinical study, C. sinensis was shown to exert a protective effect on NSCLC, primarily by inhibiting the MAPK pathway.

10.
J Immunol Res ; 2024: 4817924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380081

RESUMEN

Background: Ovarian cancer (OV) is characteristic of high incidence rate and fatality rate in the malignant tumors of female reproductive system. Researches on pathogenesis and therapeutic targets for OV need to be continued. This study mainly analyzed the immune-related pathogenesis and discovered the key immunotherapy targets for OV. Methods: WGCNA was used for excavating hub gene modules and hub genes related to the immunity of OV. Enrichment analysis was aimed to analyze the related pathways of hub gene modules. Biological experiments were used for exploring the effect of hub genes on SKOV3 cells. Results: We identified two hub gene modules related to the immunoscore of OV and found that these genes in the modules were related to the extracellular matrix and viral infections. At the same time, we also discovered six hub genes related to the immunity of OV. Among them, KIF26B and CREB3L1 can affect the proliferation, migration, and invasion of SKOV3 cells by the Wnt/ß-catenin pathway. Conclusions: The local infection or inflammation of ovarian may affect the immunity of OV. KIF26B and CREB3L1 are expected to be potential targets for the immunotherapy of OV.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/genética , Matriz Extracelular , Redes Reguladoras de Genes , Inmunoterapia , Proteínas del Tejido Nervioso , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Cinesinas/genética
11.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401519

RESUMEN

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácido Glicirretínico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Ácido Glicirretínico/farmacología , Neoplasias Pulmonares/patología , Caspasa 3 , Peroxiredoxina VI/uso terapéutico , Línea Celular Tumoral , Apoptosis
12.
Sci Data ; 11(1): 210, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360815

RESUMEN

Exosomes play a crucial role in intercellular communication and can be used as biomarkers for diagnostic and therapeutic clinical applications. However, systematic studies in cancer-associated exosomal nucleic acids remain a big challenge. Here, we developed ExMdb, a comprehensive database of exosomal nucleic acid biomarkers and disease-gene associations curated from published literature and high-throughput datasets. We performed a comprehensive curation of exosome properties including 4,586 experimentally supported gene-disease associations, 13,768 diagnostic and therapeutic biomarkers, and 312,049 nucleic acid subcellular locations. To characterize expression variation of exosomal molecules and identify causal factors of complex diseases, we have also collected 164 high-throughput datasets, including bulk and single-cell RNA sequencing (scRNA-seq) data. Based on these datasets, we performed various bioinformatics and statistical analyses to support our conclusions and advance our knowledge of exosome biology. Collectively, our dataset will serve as an essential resource for investigating the regulatory mechanisms of complex diseases and improving the development of diagnostic and therapeutic biomarkers.


Asunto(s)
Conjuntos de Datos como Asunto , Exosomas , Neoplasias , Ácidos Nucleicos , Humanos , Biomarcadores , Biomarcadores de Tumor , Biología Computacional , Exosomas/genética , Neoplasias/diagnóstico , Neoplasias/genética , Ácidos Nucleicos/genética , Bases de Datos Genéticas
13.
J Inflamm Res ; 17: 15-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38193042

RESUMEN

Background and Objective: Peptic ulcer is a high incidence gastrointestinal disease in China. Berberine (BBR) is a natural product isolated from the Chinese herb Coptis chinensis Franch that has protective effects in digestive diseases. We aimed to evaluate the ability of BBR to attenuate acute gastric ulcer induced by one-time administration of ethanol in the rat. Methods: Tissue pathological morphology, macroscopic score, ulcer healing rate, and serum levels of the inflammatory cytokines nitric oxide (NO), interleukin-6 (IL-6), and prostaglandin E2 (PGE2), and anti-inflammatory interleukin-10 (IL-10) were used to determine the efficacy of BBR and evaluated to identify the optimal dosage. Subsequently, transcriptome and metabolome sequencing were conducted in Control, Model, and optimal dosage groups to explore the pathogenesis of the disease and the mechanism of action of the drug. The levels of malondialdehyde (MDA), myeloperoxidase (MPO), as well as those of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined by enzyme-linked immunosorbent assay to verify the results of transcriptomics and metabolomics analyses. Results: BBR significantly improved the pathological morphology of gastric ulcers, increased the macroscopic score and healing rate, decreased serum levels of NO, IL-6, and PGE2, and increased serum levels of IL-10, thus effectively alleviating gastric ulcer severity. Transcriptome results showed that the therapeutic effect of BBR was mainly mediated by the arachidonic acid metabolism pathway at the gene level, which is closely associated with inflammation and increased levels of reactive oxygen species (ROS). The differentially accumulated metabolite prostaglandin E1, which is a negative regulator of ROS, was significantly up-regulated after BBR administration. The validation results indicated that BBR pretreatment increased SOD and GSH-Px enzyme activities, while reducing levels of the oxidative products MDA and MPO. Conclusion: This study demonstrated that BBR exerts a protective effect on acute gastric ulcer by promoting tricarboxylic acid cycle-mediated arachidonic acid metabolism.

14.
Autophagy ; 20(3): 541-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37733919

RESUMEN

Sorafenib is the most widely used first-line drug for the treatment of the advanced hepatocellular carcinoma (HCC). Unfortunately, sorafenib resistance often limits its therapeutic efficacy. To evaluate the efficacy of artesunate against sorafenib-resistant HCC and to investigate its underlying pharmacological mechanisms, a "sorafenib resistance related gene-ART candidate target" interaction network was constructed, and a signaling axis consisting with artesunate candidate target AFAP1L2 and sorafenib target SRC, and the downstream FUNDC1-dependent mitophagy was identified as a major contributor to the sorafenib resistance and a potential way of artesunate to mitigate resistance. Notably, our clinical data demonstrated that AFAP1L2 expression in HCC tissues was markedly higher than that in adjacent non-cancerous liver tissues (P < 0.05), and high AFAP1L2 expression was also significantly associated with an unfavorable overall survival of HCC patients (P < 0.05). Experimentally, AFAP1L2 was overexpressed in sorafenib resistant cells, leading to the activation of downstream SRC-FUNDC1 signaling axis, further blocking the FUNDC1 recruitment of LC3B to mitochondria and inhibiting the activation of mitophagy, based on both in vitro and in vivo systems. Moreover, artesunate significantly enhanced the inhibitory effects of sorafenib on resistant cells and tumors by inducing excessive mitophagy. Mechanically, artesunate reduced the expression of AFAP1L2 protein, suppressed the phosphorylation levels of SRC and FUNDC1 proteins, promoted the FUNDC1 recruitment of massive LC3B to mitochondria, and further overactivated the mitophagy and subsequent cell apoptosis of sorafenib resistant cells. In conclusion, artesunate may be a promising strategy to mitigate sorafenib resistance in HCC via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy.Abbreviations: AFAP1L2, actin filament associated protein 1 like 2; ANOVA, analysis of variance; ANXA5, annexin V; ART: artesunate; CETSA, cellular thermal shift assay; CI: combination index; CO-IP: co-immunoprecipitation; CQ: chloroquine; CT, computed tomography; [18F]-FDG, fluoro-2-D-deoxyglucose F18; FUNDC1: FUN14 domain containing 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC, hepatocellular carcinoma; H&E Staining: hematoxylin - eosin staining; HepG2R, sorafenib resistant HepG2; IF, immunofluorescence; IHC, immunohistochemistry; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; miR, microRNA; mRNA: messenger RNA; OE, overexpression; OS, overall survival; PET, positron emission tomography; qRT-PCR: quantitative real-time PCR; sh, short hairpin; shNC: negative control shRNA; shAFAP1L2: short hairpin AFAP1L2; SORA, sorafenib; SPR, surface plasmon resonance; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; SUV, standardized uptake value; TEM, transmission electron microscopy; TOMM20: translocase of outer mitochondrial membrane 20.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Mitofagia/genética , Artesunato/farmacología , Artesunato/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
15.
Adv Healthc Mater ; : e2302955, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975183

RESUMEN

Due to the limitations of H2 O2 under physiological conditions and defective activity, nanozyme-catalyzed therapy for infected diabetic wound healing is still a huge challenge. Here, this work designs a novel multifunctional hybrid glucose oxidase (GOx)-CeO2 @black phosphorus (BP)/Apt nanosheet that features GOx and CeO2 dual enzyme loading with photothermal enhancement effect and targeting ability for the treatment of infected wounds in type II diabetic mice. Combined with the photothermal properties of the BP nanosheets, the cascade nanozyme effect of GOx and CeO2 is extremely enhanced. The synergistic effect of peroxidase activity and photothermal therapy with targeting aptamer allows for overcoming the catalytic defects of nanozyme and significantly improving in vitro bacterial inhibition rate with 99.9% and 97.8% for Staphylococcus aureus and Escherichia coli, respectively, as well as enhancing in vivo antibacterial performance with the lowest wound remained (0.05%), reduction of infiltration inflammatory cells, and excellent biocompatibility. Overall, this work builds a nanodelivery system with a powerful therapeutic approach, incorporating self-supplying H2 O2 synergistic photothermal and real-time wound monitoring effect, which holds profound potential as a clinical treatment for infected diabetic wounds.

16.
J Nanobiotechnology ; 21(1): 383, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858186

RESUMEN

Immunotherapy has good potential to eradicate tumors in the long term. However, due to the low immunogenicity of tumor cells, current cancer immunotherapies are not effective. To address this limitation, we constructed a BSA-FA functionalized iron-containing metal-organic framework (TPL@TFBF) that triggers a potent systemic anti-tumor immune response by inducing ferroptosis and pyroptosis in tumor cells and releasing large quantities of damage-associated molecular patterns (DAMPs) to induce immunogenicity, and showing excellent efficacy against melanoma lung metastases in vivo. This nanoplatform forms a metal-organic framework through the coordination between tannic acid (TA) and Fe3+ and is then loaded with triptolide (TPL), which is coated with FA-modified BSA. The nanoparticles target melanoma cells by FA modification, releasing TPL, Fe3+ and TA. Fe3+ is reduced to Fe2+ by TA, triggering the Fenton reaction and resulting in ROS production. Moreover, TPL increases the production of intracellular ROS by inhibiting the expression of nuclear factor erythroid-2 related factor (Nrf2). Such simultaneous amplification of intracellular ROS induces the cells to undergo ferroptosis and pyroptosis, releasing large amounts of DAMPs, which stimulate antigen presentation of dendritic cells (DCs) and the proliferation of cytotoxic T lymphocytes (CD4+/CD8 + T cells) to inhibit tumor and lung metastasis. In addition, combining nanoparticle treatment with immune checkpoint blockade (ICB) further inhibits melanoma growth. This work provides a new strategy for tumor immunotherapy based on various combinations of cell death mechanisms.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Melanoma , Estructuras Metalorgánicas , Neoplasias , Humanos , Piroptosis , Especies Reactivas de Oxígeno , Melanoma/tratamiento farmacológico , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral
17.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4173-4186, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802786

RESUMEN

Neuropathic pain(NP) has similar phenotypes but different sequential neuroinflammatory mechanisms in the pathological process. It is of great significance to inhibit the initiation of neuroinflammation, which has become a new direction of NP treatment and drug development in recent years. Mongolian drug Naru-3 is clinically effective in the treatment of trigeminal neuralgia, sciatica, and other NPs in a short time, but its pharmacodynamic characteristics and mechanism of analgesia are still unclear. In this study, a spinal nerve ligation(SNL) model simulating clinical peripheral nerve injury was established and the efficacy and mechanism of Naru-3 in the treatment of NPs was discussed by means of behavioral detection, side effect evaluation, network analysis, and experimental verification. Pharmacodynamic results showed that Naru-3 increased the basic pain sensitivity threshold(mechanical hyperalgesia and thermal radiation hyperalgesia) in the initiation of SNL in animals and relieved spontaneous pain, however, there was no significant effect on the basic pain sensitivity threshold and motor coordination function of normal animals under physiological and pathological conditions. Meanwhile, the results of primary screening of target tissues showed that Naru-3 inhibited the second phase of injury-induced nociceptive response of formalin test in mice and reduced the expression of inflammatory factors in the spinal cord. Network analysis discovered that Naru-3 had synergy in the treatment of NP, and its mechanism was associated with core targets such as matrix metalloproteinase-9(MMP9) and interleukin-1ß(IL-1ß). The experiment further took the dorsal root ganglion(DRG) and the stage of patho-logical spinal cord as the research objects, focusing on the core targets of inducing microglial neuroinflammation. By means of Western blot, immunofluorescence, agonists, antagonists, behavior, etc., the mechanism of Naru-3 in exerting NP analgesia may be related to the negative regulation of the MMP9/IL-1ß signaling pathway-mediated microglia p38/IL-1ß inflammatory loop in the activation phase. The relevant research enriches the biological connotation of Naru-3 in the treatment of NP and provides references for clinical rational drug use.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Neuralgia , Ratas , Ratones , Animales , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Médula Espinal/metabolismo , Transducción de Señal , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo
18.
J Ovarian Res ; 16(1): 200, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817210

RESUMEN

BACKGROUND: Patients with epithelial ovarian carcinoma (EOC) are usually diagnosed at an advanced stage with tumour cell invasion. However, identifying the underlying molecular mechanisms and biomarkers of EOC proliferation and invasion remains challenging. RESULTS: Herein, we explored the relationship between tumour microenvironment (TME) reprogramming and tissue invasion based on single-cell RNA sequencing (scRNA-seq) datasets. Interestingly, hypoxia, oxidative phosphorylation (OXPHOS) and glycolysis, which have biologically active trajectories during epithelial mesenchymal transition (EMT), were positively correlated. Moreover, energy metabolism and anti-apoptotic activity were found to be critical contributors to intratumor heterogeneity. In addition, HMGA1, EGR1 and RUNX1 were found to be critical drivers of the EMT process in EOC. Experimental validation revealed that suppressing EGR1 expression inhibited tumour cell invasion, significantly upregulated the expression of E-cadherin and decreased the expression of N-cadherin. In cell components analysis, cancer-associated fibroblasts (CAFs) were found to significantly contribute to immune infiltration and tumour invasion, and the accumulation of CAFs was associated with poorer patient survival. CONCLUSION: We revealed the molecular mechanism and biomarkers of tumour invasion and TME reprogramming in EOC, which provides effective targets for the suppression of tumour invasion.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/patología , Microambiente Tumoral/genética , Transición Epitelial-Mesenquimal/genética , Biomarcadores , Línea Celular Tumoral
19.
J Pharm Anal ; 13(8): 908-925, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719192

RESUMEN

Tripterygium glycosides tablet (TGT), the classical commercial drug of Tripterygium wilfordii Hook. F. has been effectively used in the treatment of rheumatoid arthritis, nephrotic syndrome, leprosy, Behcet's syndrome, leprosy reaction and autoimmune hepatitis. However, due to its narrow and limited treatment window, TGT-induced organ toxicity (among which liver injury accounts for about 40% of clinical reports) has gained increasing attention. The present study aimed to clarify the cellular and molecular events underlying TGT-induced acute liver injury using single-cell RNA sequencing (scRNA-seq) technology. The TGT-induced acute liver injury mouse model was constructed through short-term TGT exposure and further verified by hematoxylin-eosin staining and liver function-related serum indicators, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Using the mouse model, we identified 15 specific subtypes of cells in the liver tissue, including endothelial cells, hepatocytes, cholangiocytes, and hepatic stellate cells. Further analysis indicated that TGT caused a significant inflammatory response in liver endothelial cells at different spatial locations; led to marked inflammatory response, apoptosis and fatty acid metabolism dysfunction in hepatocytes; activated hepatic stellate cells; brought about the activation, inflammation, and phagocytosis of liver capsular macrophages cells; resulted in immune dysfunction of liver lymphocytes; disturbed the intercellular crosstalk in liver microenvironment by regulating various signaling pathways. Thus, these findings elaborate the mechanism underlying TGT-induced acute liver injury, provide new insights into the safe and rational applications in the clinic, and complement the identification of new biomarkers and therapeutic targets for liver protection.

20.
J Pharm Anal ; 13(7): 817-829, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577384

RESUMEN

Sepsis is characterized by a severe and life-threatening host immune response to polymicrobial infection accompanied by organ dysfunction. Studies on the therapeutic effect and mechanism of immunomodulatory drugs on the sepsis-induced hyperinflammatory or immunosuppression states of various immune cells remain limited. This study aimed to investigate the protective effects and underlying mechanism of artesunate (ART) on the splenic microenvironment of cecal ligation and puncture-induced sepsis model mice using single-cell RNA sequencing (scRNA-seq) and experimental validations. The scRNA-seq analysis revealed that ART inhibited the activation of pro-inflammatory macrophages recruited during sepsis. ART could restore neutrophils' chemotaxis and immune function in the septic spleen. It inhibited the activation of T regulatory cells but promoted the cytotoxic function of natural killer cells during sepsis. ART also promoted the differentiation and activity of splenic B cells in mice with sepsis. These results indicated that ART could alleviate the inflammatory and/or immunosuppressive states of various immune cells involved in sepsis to balance the immune homeostasis within the host. Overall, this study provided a comprehensive investigation of the regulatory effect of ART on the splenic microenvironment in sepsis, thus contributing to the application of ART as adjunctive therapy for the clinical treatment of sepsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...