RESUMEN
Direct and consistent monitoring of respiratory patterns is crucial for disease prognostication. Although the wired clinical respiratory monitoring apparatus can operate accurately, the existing defects are evident, such as the indispensability of an external power supply, low mobility, poor comfort, and limited monitoring timeframes. Here, we present a self-powered in-nostril hydrogel sensor for long-term non-irritant anti-interference respiratory monitoring, which is developed from a dual-network binary-solvent thermogalvanic polyvinyl alcohol hydrogel fiber (d = 500 µm, L=30 mm) with Fe2+/Fe3+ ions serving as a redox couple, which can generate a thermoelectrical signal in the nasal cavity based on the temperature difference between the exhaled gas and skin as well as avoid interference from the external environment. Due to strong hydrogen bonding between solvent molecules, the sensor retains over 90 % of its moisture after 14 days, exhibiting great potential in wearable respiratory surveillance. With the assistance of deep learning, the hydrogel fiber-based respiration monitoring strategy can actively recognize seven typical breathing patterns with an accuracy of 97.1 % by extracting the time sequence and dynamic parameters of the thermoelectric signals generated by respiration, providing an alert for high-risk respiratory symptoms. This work demonstrates the significant potential of thermogalvanic gels for next-generation wearable bioelectronics for early screening of respiratory diseases.
Asunto(s)
Aprendizaje Profundo , Hidrogeles , Alcohol Polivinílico , Dispositivos Electrónicos Vestibles , Hidrogeles/química , Humanos , Monitoreo Fisiológico/instrumentación , Alcohol Polivinílico/química , Respiración , TemperaturaRESUMEN
Emergency wounds are often accompanied by bacterial infection, oxidative stress, and excessive inflammation due to the inability to quickly close and stop bleeding, resulting in chronic wounds that are difficult to heal. Clinically, surgical suturing is the fastest method for wound closure, but it is only suitable for wounds with small bleeding volumes and causes unsightly scar formation. Consequently, there is a critical need for hemostatic dressings versatile enough to address a spectrum of diverse and intricate wounds, especially in emergency scenarios. In this study, we constructed a unique versatile natural gelatin-based hydrogel with hemostasis, antibacterial, and anti-inflammation properties. The hydrogel was composed of 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butyrylethylenediamine-modified methacrylated gelatin (GelMA-NB) and epigallocatechin gallate-grafted polylysine (EPL-EGCG), which imparts adhesion, antibacterial and antioxidant properties to the hydrogel. Simultaneously, the hydrogel was loaded with GelMA microspheres encapsulating natural resveratrol (RES@GM). This combination not only exhibited outstanding hemostatic capabilities but also preserved the anti-inflammatory potential of RES. In different animal models, the hydrogel exhibited outstanding hemostatic and wound healing effects, down-regulated the expression of IL-1ß to promote inflammatory regulation and potential for angiogenesis and anti-scar. In conclusion, unique versatile natural gelatin-based hydrogel suitable for various complex wounds provides a promising strategy for emergency wound dressing applications.
RESUMEN
Antibacterial bone cements (ABCs), such as antibiotic-loaded bone cements (ALBCs), have been widely utilized in clinical treatments. Currently, bone cements loaded with vancomycin, gentamicin, tobramycin, or clindamycin are approved by the US Food and Drug Administration. However, traditional ALBCs exhibit drawbacks like burst release and bacterial resistance. Therefore, there is a demand for the development of antibacterial bone cements containing novel agents to address these defects. In this review, we provide an overview and prospect of the new antibacterial agents that can be used or have the potential to be applied in bone cement, including metallic antibacterial agents, pH-switchable antibacterial agents, cationic polymers, N-halamines, non-leaching acrylic monomers, antimicrobial peptides and enzymes. Additionally, we have conducted a preliminary assessment of the feasibility of bone cement containing N-halamine, which has demonstrated good antibacterial activities. The conclusion of this review is that the research and utilization of bone cement containing novel antibacterial agents contribute to addressing the limitations of ALBCs. Therefore, it is necessary to continue expanding the research and use of bone cement incorporating novel antibacterial agents. This review offers a novel perspectives for designing ABCs and treating bone infections.
Asunto(s)
Antibacterianos , Cementos para Huesos , Cementos para Huesos/uso terapéutico , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Humanos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/uso terapéutico , Péptidos Antimicrobianos/química , PolímerosRESUMEN
Glucose metabolism disturbances may result in diabetes-associated cognitive decline (DACI). Methionine restriction (MR) diet has emerged as a potential dietary strategy for managing glucose homeostasis. However, the effects and underlying mechanisms of MR on DACI have not been fully elucidated. Here, we found that a 13-week MR (0.17 % methionine, w/w) intervention starting at 8 weeks of age improved peripheral insulin sensitivity in male db/db mice, a model for type 2 diabetes. Notably, MR significantly improved working as well as long-term memory in db/db mice, accompanied by increased PSD-95 level and reduced neuroinflammatory factors, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). We speculate that this effect may be mediated by MR activating hepatic fibroblast growth factor 21 (FGF21) and the brain FGFR1/AMPK/GLUT4 signaling pathway to enhance brain glucose metabolism. To further delineate the mechanism, we used intracerebroventricular injection of adeno-associated virus to specifically knock down FGFR1 in the brain to verify the role of FGFR1 in MR-mediated DACI. It was found that the positive effects of MR on DACI were offset, reflected in decreased cognitive function, impaired synaptic plasticity, upregulated neuroinflammation, and balanced enzymes regulating reactive oxygen species (Sod1, Sod2, Nox4). Of note, the FGFR1/AMPK/GLUT4 signaling pathway and brain glucose metabolism were inhibited. In summary, our study demonstrated that MR increased peripheral insulin sensitivity, activated brain FGFR1/AMPK/GLUT4 signaling through FGF21, maintained normal glucose metabolism and redox balance in the brain, and thereby alleviated DACI. These results provide new insights into the effects of MR diet on cognitive dysfunction caused by impaired brain energy metabolism.
RESUMEN
BACKGROUND: The PWWP domain-containing proteins are involved in chromatin-associated biological processes, including transcriptional regulation and DNA repair, and most of them are significant for gametogenesis and early embryonic development in mammals. PWWP3A, one of the PWWP domain proteins, is a reader of H3K36me2/H3K36me3 and a response factor to DNA damage. However, the physiological role of PWWP3A in spermatogenesis and fertility remains unclear. OBJECTIVE: The goal of this study was to explore the function and mechanism of PWWP3A in the process of spermatogenesis. MATERIALS AND METHODS: We generated V5-Pwwp3a KI mice and PWWP3A polyclonal antibody to observe the localization of PWWP3A in vivo. Meanwhile, Pwwp3a KO mice was used to explore the function in spermatogenesis. RESULTS: We reported that PWWP3A is a predominant expression in the testis of mice. During spermatogenesis, PWWP3A exhibits the temporal expression from early-pachytene to the round spermatids. The results of spermatocyte spreading and immunostaining showed that PWWP3A aggregated on the XY body, which then diffused as the XY chromosome separated at late-diplotene. Although the depletion of PWWP3A had no obvious reproductive defects in young male mice, there were observed morphological abnormalities in sperm heads. Immunoprecipitation demonstrated the interaction of PWWP3A with DNA repair proteins SMC5/6; however, PWWP3A deficiency did not result in any meiotic defects. Notably, the testes of aged male Pwwp3a KO mice displayed pronounced degeneration, and were characterized by the presence of vacuolated seminiferous tubules. Furthermore, RNA-seq analysis revealed an upregulation in the expression of genes which may be involving in immunoregulatory and inflammatory response pathways in aged Pwwp3a KO mice with testicular degeneration. CONCLUSIONS: Our study showed that PWWP3A was highly enriched in the mouse testis, and the Pwwp3a KO mice were fertile. However, the aged Pwwp3a KO male mice displayed testicular atrophy that may be due to changes in the immune micro-environment or abnormal repair of DNA damage.
RESUMEN
Patient-centered communication is widely acknowledged as an essential element of high-quality healthcare. Our study attempted to explore the weaknesses in the actual doctor-patient communication process and the most critical elements in patient-centered communication to improve the service quality of e-consult. We recruited ten standardized patients presenting fixed cases (urticaria and childhood diarrhea) for 321 valid interactions to measure patient-centered communication and e-consult service quality. The scores of patient-centered communication included exploring the patient's disease experience, understanding the patient's social situation, and reaching a consensus between doctors and patients. We measured the quality of e-consult services by the total words of doctor's responses, accurate diagnosis, appropriate prescription, lifestyle modification advice, patient satisfaction, continuance intention, and cost. Ordinary least-squares and logistic regression were performed to investigate the association between patient-centered communication and e-consult service quality. The total mean score of patient-centered communication was 17.67. The mean words of responses and cost were 178.55 words and 39.46 yuan, respectively. 82.87% of doctors diagnosed accurately, with 21.81% prescribing appropriate prescriptions and 81.93% providing lifestyle modification advice. 254 interactions obtained high satisfaction, and 218 had continuance intention after the interactions. Doctors with higher patient-centered communication levels would provide more words of responses. They were more likely to provide accurate diagnoses, appropriate prescriptions, and lifestyle modification advice, resulting in better patient satisfaction, continuance intention, and higher costs. Therefore, it is necessary to standardize and improve the doctor-patient communication process of e-consult and develop training for different doctors.
RESUMEN
Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a â¼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of â¼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately â¼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past â¼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.
RESUMEN
To tackle the clinical challenge of noninvasively assessing immunotherapy efficacy in patients, here we used positron emission tomography (PET) with 68Ga-grazytracer, which targets granzyme B, a crucial effector molecule secreted by activated CD8+ T cells. In this phase 1/2 clinical trial (NCT05000372) involving a diverse cohort of 24 patients with solid tumors and lymphomas who received immunotherapies, including immune checkpoint inhibitors (either alone or with chemotherapies) and chimeric antigen receptor-T cell therapy, we examined the in vivo behaviors of 68Ga-grazytracer. Primary endpoints were safety, biodistribution, granzyme B specificity, and the predictive utility of 68Ga-grazytracer, while secondary endpoint was the relationship between 68Ga-grazytracer uptake and tumor immune phenotype. 68Ga-grazytracer exhibited a safe profile and specifically targeted granzyme B in patients. 68Ga-grazytracer PET showed superior predictive value for short-term prognosis and progression-free survival than those of conventional assessment criteria, including RECIST 1.1 and PERCIST. Moreover, the uptake of 68Ga-grazytracer in tumors was significantly higher in those with a "non-desert" immune phenotype than those with an immune "desert" phenotype, thereby meeting the primary and secondary endpoints of this trial. Collectively, we successfully visualized CD8+ T cell effector function in humans using 68Ga-grazytracer PET, offering insights for enhancing immunotherapy assessment, patient stratification and treatment planning.
Asunto(s)
Granzimas , Inmunoterapia , Linfoma , Tomografía de Emisión de Positrones , Humanos , Granzimas/metabolismo , Tomografía de Emisión de Positrones/métodos , Femenino , Linfoma/diagnóstico por imagen , Linfoma/terapia , Linfoma/inmunología , Masculino , Persona de Mediana Edad , Anciano , Inmunoterapia/métodos , Adulto , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/diagnóstico por imagen , Linfocitos T CD8-positivos/inmunología , Radioisótopos de Galio , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Supervivencia sin Progresión , Distribución TisularRESUMEN
Myocarditis, which can be triggered by immune checkpoint inhibitor (ICI) treatment, represents a critical and severe adverse effect observed in cancer therapy. Thus, elucidating the underlying mechanism and developing effective strategies to mitigate its harmful impact is of utmost importance. The objective of this study is to investigate the potential role and regulatory mechanism of exosomes derived from human bone marrow mesenchymal stem cells (hBMSC-Exos) in providing protection against myocardial injury induced by ICIs. We observed that the administration of programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitor BMS-1 in tumor-bearing mice led to evident cardiac dysfunction and myocardial injury, which were closely associated with M1 macrophage polarization and cardiac pyroptosis. Remarkably, these adverse effects were significantly alleviated through tail-vein injection of hBMSC-Exos. Moreover, either BMS-1 or hBMSC-Exos alone demonstrated the ability to reduce tumor size, while the combination of hBMSC-Exos with BMS-1 treatment not only effectively improved the probability of tumor inhibition but also alleviated cardiac anomalies induced by BMS-1.
RESUMEN
The miRNA plays a key role in the regulation of hormone signaling in insects. The pathways by which miRNAs affect hormone levels are unclear in the honeybee (Apis mellifera), an indispensable pollinator in nature. In this study, ame-miR-5119 was overexpressed and knocked down in larvae by feeding mimics and inhibitors, respectively, and we determined that ame-miR-5119 regulates hormone signaling through the target gene ecdysis triggering hormone (Eth), which affects the larval-pupal transition of workers. The results showed that ame-miR-5119 with a length of 19 nt targets six genes related to the hormone pathway. We focused on Eth and found that ame-miR-5119 and Eth exhibited reverse expression patterns during the transition from larval to pupal stages in workers. Dual luciferase assay confirmed the negative regulatory between ame-miR-5119 and Eth. Overexpression of ame-miR-5119 decreased the mRNA level of Eth, and the Eth receptor (Ethr) expression was not significantly affected, but the expression levels of juvenile hormone (JH) pathway related genes juvenile hormone acid methyltransferase (Jhamt) and Krüppel homolog 1 (Kr-h1) were significantly reduced. In contrast, knockdown of ame-miR-5119 increased the mRNA level of Eth, and the expression of Ethr, Jhamt and Kr-h1 was significantly upregulated. ame-miR-5119 did not affect larval body weight. The number of larvae overexpressing ame-miR-5119 survived in the prepupal stage was lower than that in the control group, and the number of pupations reduced at 11-day-old. The number of larvae that knocked down ame-miR-5119 survived in the prepupal stage was significantly higher than that in the control group, and the number of pupations increased at 11-day-old. These results indicated that ame-miR-5119 negatively regulates the expression of Eth, indirectly inhibits the expression of Ethr, Jhamt, and Kr-h1, and affects the JH biosynthesis, thereby preventing the metamorphic transition from larva to pupa in worker bees. These findings provide evidence that the miRNA regulation of hormone levels in honey bees.
RESUMEN
A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures.
RESUMEN
Polyhydroxyalkanoates (PHA) have been proposed as a promising solution for plastic pollution due to their biodegradability and diverse applications. To promote PHA as a competitive commercial product, an attractive alternative is to produce and recover PHA in the use of mixed cultures such as waste activated sludge from wastewater treatment plants. PHA can accumulate in sludge with a potential range of 40%-65% g PHA/g VSS. However, wider challenges with PHA production efficiency, stability, and economic viability still persist for PHA application. This work provides an overview of the current understanding and status of PHA bioconversion in waste sludge with particular attention given to metabolic pathways, operation modes, factors affecting the process, and applications. Challenges and future prospectives for PHA bioconversion in sludge are discussed.
RESUMEN
Oxidative stress is a major factor affecting spinal cord injury (SCI) prognosis. A ruthenium metal complex can aid in treating SCI by scavenging reactive oxygen species via a protein-regulated mechanism to alleviate oxidative stress. This study aimed to introduce a pioneering strategy for SCI treatment by designing two novel half-sandwich ruthenium (II) complexes containing diverse N^N-chelating ligands. The general formula is [(η6-Arene)Ru(N^N)Cl]PF6, where arene is either 2-phenylethanol-1-ol (bz-EA) or 3-phenylpropanol-1-ol (bz-PA), and the N^N-chelating ligands are fluorine-based imino-pyridyl ligands. This study shows that these ruthenium metal complexes protect neurons by scavenging reactive oxygen species. Notably, η6-Arene substitution from bz-PA to bz-EA significantly enhances reactive oxygen species scavenging ability and neuroprotective effect. Additionally, molecular dynamics simulations indicate that the ruthenium metal complex increases Antioxidant 1 Copper Chaperone protein expression, reduces oxidative stress, and protects neurons during SCI treatment. Furthermore, ruthenium metal complex protected spinal cord neurons and stimulated their regeneration, which improves electrical signals and motor functions in mice with SCI. Thus, this treatment strategy using ruthenium metal complexes can be a new therapeutic approach for the efficient treatment of SCI.
RESUMEN
Diabetic ulcers are one of the common complications in diabetic patients. Delayed wound healing is associated with persistent pro-inflammatory M1 polarization, reduced angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Wound healing consists of multiple phases and therefore requires treatment tailored to each phase. In this study, a biphasic drug-releasing microneedle (MN) was fabricated to achieve early ROS scavenging and late accelerated angiogenesis to promote wound healing. Vascular endothelial growth factor (VEGF) was first encapsulated in methacryloylated sulfonated chitosan (SCSMA) microspheres (V@MP), and then V@MP was loaded into hyaluronic acid (HA) microneedles along with cerium dioxide nanoparticles (CONPs). Rapid dissolution of HA rapidly releases the CONPs to clear ROS, whereas the V@MP stays in the wound. SCSMA slow degradation prolongs the release of VEGF, thereby promoting angiogenesis. In vitro and in vivo studies have shown that this biphasic drug-releasing smart microneedle improves cell proliferation and migration, effectively scavenges ROS, promotes angiogenesis and tissue regeneration, and synergistically promotes M2 macrophage polarization. It provides a new delivery mode for nano-enzymes and growth factors that could be multifunctional and synergistic in the treatment of diabetic ulcers. STATEMENT OF SIGNIFICANCE: In our study, we present a microneedle (V@MP/C@MN) that can release drugs biphasically, which showed good repair ability in diabetic ulcer model. Large amounts of CONPs were rapidly released to alleviate oxidative stress during the inflammation of the wound, and V@MP stayed in the wound for a long period of time to release VEGF and promote angiogenesis in the late stage of wound healing. The results indicated that V@MP/C@MN could promote cell proliferation and migration, effectively scavenge ROS, promote angiogenesis and tissue regeneration, and synergistically promote M2 macrophage polarization, which could play a multifunctional and synergistic role in the treatment of diabetic ulcers.
RESUMEN
BACKGROUND: Congenital microtia usually lead to impairment of both appearance and hearing especially for patients with bilateral microtia. The simultaneous combination of auricular reconstruction and bone bridge implantation has been proved effective and satisfied with the patients. We retrospectively analyzed this method and the complication of it. We summarized and found the application of superficial temporal island flap for repairing the bone bridge exposure. METHODS: From January 2017 to December 2020, there were 84 patients who underwent the surgery of auricular reconstruction simultaneously combined with bone bridge implantation in the Plastic Surgery Hospital of Chinese Academy of Medical Sciences. And after 12 months follow-up, we evaluated the postoperative effect and collected data on the patients who had bone bridge exposure. We analyzed the reason of the complication and covered the exposed bone bridge with superficial temporal island flap. RESULTS: There were 3 cases (3.6%) of implant exposure and the surgical outcome was satisfactory using the repairment of superficial temporal island flap. All 3 patients were healed in 1-stage surgery, and no further implant exposure occurred after another 12-month follow-up. CONCLUSIONS: The method of auricular reconstruction simultaneously combined with bone bridge implant is an optional choice for patients with bilateral microtia, and has a low incidence of implant exposure. The superficial temporal island flap could well fill the dead space and increase the wear resistance of the tissue, and the scar was not obvious. We found and summarized a satisfactory method of repairing the implantation exposure using the superficial temporal island flap. LEVEL OF EVIDENCE: Level IV, cases study.
Asunto(s)
Microtia Congénita , Pabellón Auricular , Procedimientos de Cirugía Plástica , Colgajos Quirúrgicos , Humanos , Masculino , Microtia Congénita/cirugía , Procedimientos de Cirugía Plástica/métodos , Femenino , Estudios Retrospectivos , Niño , Pabellón Auricular/cirugía , Pabellón Auricular/anomalías , Adolescente , Adulto , Complicaciones Posoperatorias , Adulto Joven , Resultado del Tratamiento , Prótesis Anclada al HuesoRESUMEN
A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4â kJ mol-1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases.
RESUMEN
Cardiovascular disease, a chronic and progressive arterial wall disease, is increasingly recognized for its clinical significance. Aminopeptidases N (APN), crucial in the pathophysiological processes of vulnerable plaque, have been linked to endothelial dysfunction, oxidative stress, and plaque formation, thus highlighting their potential as biomarkers for disease progression. However, current detection methods for APN in body fluids and in vivo have limitations, including insufficient sensitivity and specificity, time delays, and the inability to directly reflect enzyme activity in plaques. To address these challenges, we developed an optical probe, HD-APN, for in vivo imaging of aminopeptidases, providing a potential implementation in cardiovascular disease. Our work demonstrated the applicability of HD-APN for specific monitoring of aminopeptidase levels in plaques and serum, shedding light on its potential for further research in cardiovascular disease.
RESUMEN
The integration of graphene and nonionic water-soluble polymers has generated useful composites with high performances and rich functionalities. These attractive graphene composites are usually synthesized from the aqueous mixture of graphene oxide (GO) precursor and polymers such as synthetic polyvinyl alcohol and natural cellulose. In this widely known preparation method, the miscibility of GO and nonionic water-soluble polymers seems to be intuitive but has been disputed by some observations of gelation and aggregation. Herein, we have re-examined the miscibility of GO and nonionic water-soluble polymers and confirm their general coaggregation caused by hydrogen bonding interaction. Due to the increasing GO concentration, the property of stable miscibility is converted to aggregation by surface adsorption with transient hydrogen bond crosslinking. We have proposed a preheat mixing strategy to prepare a homogenous solution of GO and nonionic water-soluble polymers in any arbitrary ratio. The re-exploited miscibility allows the fabrication of homogeneous composite papers with renewed high performance trend. The hydrogen bonding-regulated miscibility refreshes the understanding on graphene/water-soluble polymeric composites and provides an ecofriendly interaction control method to modulate the assembly of structures and materials.
RESUMEN
Understanding the occurrence, sources, and ecological risks of polychlorinated biphenyls (PCBs), which are universal persistent organic pollutants, is critical for improving the sustainability and ecological safety of lake systems. Herein, to determine PCB contamination levels and formulate control strategies in lake sediments, 210 sediment samples were collected from 21 lakes along a latitudinal gradient (18-45°N, â¼3000 km) across eastern China and were analyzed for all 209 PCB congeners. The results showed that the total PCB concentration varied greatly from 0.26 to 163.82 ng/g dry weight and exhibited a latitudinal trend of central > north/south. Spatial variations were affected mainly by the organic carbon fraction and local population density. Most lakes had similar PCB profiles, with lower chlorinated PCBs dominating. Notably, non-Aroclor PCB 11 was the most abundant congener. Moreover, unintentionally produced PCBs (UP-PCBs) accounted for â¼31 % of all PCBs. These findings highlight that the significance of UP-PCBs has been overlooked in past studies and that full-congener analysis is necessary for future monitoring. According to the ecological risk assessment of PCBs, zero to moderate risk existed in lake sediments. Therefore, effective strategies are needed to mitigate the impact of PCBs (especially UP-PCBs) from multiple sources on lakes.