Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Phys Rev E ; 110(2-1): 024608, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295014

RESUMEN

The separation of chiral matter has garnered significant attention due to its wide-ranging applications in biological and chemical processes. In prior researches, particle interactions were predominantly repulsive, but the indiscriminate attraction among particles under attractive interactions makes the separation of mixtures more difficult. The question of whether chiral mixed particles, characterized by attractive effects, can undergo spontaneous separation, remains unresolved. We study a binary mixture of chiral (counterclockwise or clockwise) active particles with attractive interactions. It is demonstrated that attractive chiral particles can undergo spontaneous separation without the aid of any specific strategies. The key factor driving the separation is the attractive interactions, enabling the formation of stable clusters of particles with same chirality. There exist optimal parameters (self-propelled velocity, angular velocity, and packing fraction) at which the separation is optimal. Our results may contribute to a deeper understanding of the mechanisms behind chiral matter separation and potentially catalyze further experimental investigations in this field.

3.
Phys Rev E ; 109(6-1): 064902, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020947

RESUMEN

The dense active matter exhibits characteristics reminiscent of traditional glassy phenomena, yet the role of rotational inertia in glass dynamics remains elusive. In this study, we investigate the glass dynamics of chiral active particles influenced by rotational inertia. Rotational inertia endows exponential memory to particle orientation, restricting its alteration and amplifying the effective persistence time. At lower spinning frequencies, the diffusion coefficient exhibits a peak function relative to rotational inertia for shorter persistence times, while it steadily increases with rotational inertia for longer persistence times. In the realm of high-frequency spinning, the impact of rotational inertia on diffusion behavior becomes more pronounced, resulting in a nonmonotonic and intricate relationship between the diffusion coefficient and rotational inertia. Consequently, the introduction of rotational inertia significantly alters the glassy dynamics of chiral active particles, allowing for the control over transitions between fluid and glassy states by modulating rotational inertia. Moreover, our findings indicate that at a specific spinning temperature, there exists an optimal spinning frequency at which the diffusion coefficient attains its maximum value.

4.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062878

RESUMEN

Cerasus humilis, a small shrub of the Cerasus genus within the Rosaceae family, is native to China and renowned for its highly nutritious and medicinal fruits, robust root system, and remarkable drought resistance. This study primarily employed association transcriptome and metabolome analyses to assess changes in abscisic acid (ABA) levels and identify key regulatory genes in C. humilis subjected to varying degrees of drought stress. Notably, we observed distinct alterations in transcription factors across different drought intensities. Specifically, our transcriptome data indicated noteworthy shifts in GATA, MYB, MYC, WRKY, C2H2, and bHLH transcription factor families. Furthermore, combined transcriptomic and metabolomic investigations demonstrated significant enrichment of metabolic pathways, such as 'Carbon metabolism', 'Biosynthesis of amino acids', 'Biosynthesis of cofactors', 'Phenylpropanoid biosynthesis', 'Starch and sucrose metabolism', and 'Plant hormone signal transduction' under moderate (Mod) or severe (Sev) drought conditions. A total of 11 candidate genes involved in ABA biosynthesis and signaling pathways were identified. The down-regulated genes included secoisolariciresinol dehydrogenase-like and PYL2. Conversely, genes including FAD-dependent urate hydroxylase-like, cytochrome P450 97B2, carotenoid cleavage dioxygenase 4 (CCD4), SnRK2.2, ABI 5-like protein 5, PP2C 51, and SnRK2.3, were up-regulated under Mod or Sev drought stress. This study lays the genetic foundation for ABA biosynthesis to enhance drought tolerance and provides genetic resources for plant genetic engineering and breeding efforts.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Metabolómica/métodos , Perfilación de la Expresión Génica
5.
J Hazard Mater ; 476: 134980, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38905978

RESUMEN

In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.

6.
Phys Rev E ; 109(4-1): 044143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755904

RESUMEN

The dynamic behaviors, specifically trapping and sorting, of active particles interacting with periodic substrates have garnered significant attention. This study investigates numerically the trapping of soft, deformable particles on a periodic potential substrate, which can be experimentally verified through optical tweezers. The research demonstrates that multiple factors, including the relative size of traps, self-propelled velocity, shape parameters, ratio of particles to traps, and translational diffusion, can influence the trapping effect. Within certain parameter boundaries, it is shown that all particles can be consistently trapped. The research reveals that stable trapping typically occurs at median values of the relative trap size. An increase in the self-propelled velocity, the shape parameter, and the translational diffusion coefficient tends to facilitate the escapement of the particles from the traps. It is noteworthy that particles with larger shape parameters can escape even when the restoring force exceeds the self-propelled force. In addition, as the ratio of particles to traps grows, the fraction of trapped particles steadily reduces. Notably, rigid particles are consistently divided and trapped by traps closely approximating an integer multiple of the particles' area, up until the ratio reaches the aforesaid integer value. These findings can potentially enhance the understanding of the interactive effects between active deformable particles and periodic substrates. Moreover, this work suggests a different experimental approach to sort active particles based on rigidity disparities.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124477, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38810433

RESUMEN

Hypochlorite (ClO-), as the main component of widely used disinfectants in daily life, comes into closer contact with the human body, which can lead to a number of diseases. The high-performance method is increasingly needed to detect ClO- in our daily life. In this report, we successfully synthesized a FRET ratiometric fluorescent probe (NDAC) containing benzoxadiazole moieties and coumarin moieties bound via ethylenediamine. As expected, NDAC has excellent selectivity and anti-interference ability toward ClO-, and the ratio of fluorescence intensity (I471 nm/I533 nm) has a very good linear relationship with the concentration of ClO-, with a wide linear range (2.5-1750 µM) and low detection limit (0.887 µM). Furthermore, we have successfully applied it for the quantitative detection of ClO- in water samples in daily life. At the same time, there is a very clear change in the fluorescence color after the reaction of the NDAC with ClO-. The blue/green value (B/G) of this color change also shows a very good linear relationship to ClO- (5.0-1000 µM). Therefore, the NDAC has also been successfully used for test strip detection and quantitative detection of ClO- in actual samples through smartphone-based fluorescence image analysis, and this method can provide faster, more convenient and more accessible detection. In addition, NDAC sensors also have potential applications in the field of information anti-counterfeiting.


Asunto(s)
Colorimetría , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Ácido Hipocloroso , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ácido Hipocloroso/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorimetría/métodos , Límite de Detección , Humanos , Desinfectantes/análisis , Cumarinas/química
8.
J Hazard Mater ; 473: 134630, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762988

RESUMEN

Decachlorobiphenyl (PCB-209) can be widely detected in suspended particles and sediments due to its large hydrophobicity, and some of its transformation products may potentially threaten organisms through the food chain. Here we investigate the photochemical transformation of PCB-209 on suspended particles from the Yellow River. It was found that the suspended particles had an obvious shielding effect to largely inhibit the photodegradation of PCB-209. Meanwhile, the presence of inorganic ions (e.g. Mg2+ and NO3-) and organic matters (e.g. humic acid, HA) in the Yellow River water inhibited the reaction. The main transformation products of PCB-209 were lower-chlorinated and hydroxylated polychlorinated biphenyls (OH-PCBs), and small amounts of pentachlorophenol (PCP) and polychlorinated dibenzofurans (PCDFs) were also observed. The mechanisms of PCP formation by double •OH attacking carbon bridge and PCDFs formation by elimination reaction of ionic state OH-PCBs were proposed using theoretical calculations, which provided some new insights into the inter-transformations between persistent organic pollutants. In combination with VEGA and EPI Suite software, some intermediates such as PCDFs were more toxic to organisms than PCB-209. This study deepens the understanding of the transformation behavior of PCB-209 on suspended particles under sunlight.

9.
Toxics ; 12(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38787140

RESUMEN

Soil contamination of polycyclic aromatic hydrocarbons (PAHs), especially caused by the mixture of two or more PAHs, raised great environmental concerns. However, research on the migration and transformation processes of PAHs in soils and their interactions with native communities is limited. In this work, soil samples from uncontaminated sites around the industrial parks in Handan, Hengshui, and Shanghai were artificially supplemented with three concentrations of anthracene (Ant), 9-chloroanthracene (9-ClAnt), benzopyrene (BaP), and chrysene (Chr). Ryegrass was planted to investigate the degradation of PAHs and its interaction with native soil organisms in the constructed ryegrass-microbe-soil microcosmic system. The bacterial and fungal communities in soil were affected by PAHs; their species diversity and relative abundance changed after exposure to different concentrations of PAHs, among which Lysobacter, Bacillus, Pseudomonas, and Massilia bacteria were correlated to the degradation of PAHs. On the 56th day, the contents of BaP, Chr, and Ant decreased with the degradation process, while the degradation of 9-ClAnt was limited. Nineteen intermediates, including hydroxylation and carboxylated compounds, were identified. The present research would help clarify the potential interactions between PAHs and native organisms in contaminated sites, providing fundamental information for evaluating the transformation risks of PAHs in the natural environment.

10.
Sci Total Environ ; 924: 171586, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461975

RESUMEN

Developing efficient and low-cost photocatalytic materials is essential for removing polychlorinated biphenyls (PCBs). In this work, the photodegradation process of fourteen representative polychlorinated biphenyls (PCBs) in both water/nitrogen-doped SiO2 (N-SiO2) and air/N-SiO2 systems was studied. The photodegradation kinetics of PCBs is consistent with the pseudo-first-order kinetic equation. The variation in the degradation effects of different PCBs in the two systems is primarily related to the position of the Cl substituent and the effective absorption wavelength range of PCBs. A total of fourteen intermediates for 4'-Dichlorobiphenyl (PCB-15), 2,2',4,4',6,6'-Hexachlorobiphenyl (PCB-155), and 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (PCB-209) generated from four reaction pathways were identified based on both mass spectrometry analysis and theoretical calculations. Using the values of lnk (k denotes pseudo-first-order kinetic constants) for the 11 PCBs in the training set and the calculated molecular and structural parameters, quantitative structure-activity relationship (QSAR) models for the two systems were constructed by using multiple linear regression (MLR) method to better understand the factors affecting the photodegradation rate of PCBs. The QSAR equations were obtained with Cl atom substitution at position 3 (N3) as the main parameter, which were lnk = -1.98 - 0.19 N3 for the water/N-SiO2 system and lnk = -1.56 - 0.34 N3 for the air/N-SiO2 system, with the correlation coefficient (R2) of 0.66 and 0.73, leave-one-out cross-validation (Q2LOO) of 0.51 and 0.59, respectively, and bootstrapping validation coefficients (Q2BOOT) values of both 0.74, confirming that the models were well fitted and showed high robustness and prediction ability. This study provides valuable insights into photocatalytic degradation studies of PCBs.

11.
Environ Pollut ; 346: 123621, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402942

RESUMEN

Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%-84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%-20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.


Asunto(s)
Dioxinas , Metales Pesados , Eliminación de Residuos , Residuos Sólidos/análisis , Dioxinas/análisis , Ceniza del Carbón/análisis , Fotólisis , Dióxido de Silicio , Incineración/métodos , Éteres , Eliminación de Residuos/métodos , Carbono/química , Metales Pesados/análisis
12.
Environ Pollut ; 345: 123541, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342434

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have attracted much attention because of their widespread existence and toxicity. Photodegradation is the main natural decay process of PAHs in soil. The photodegradation kinetics of benzopyrene (BaP) on 16 kinds of soils and 10 kinds of PAHs on Hebei (HE) soil were studied. The results showed that BaP had the highest degradation rate in Shaanxi (SN) soil (kobs = 0.11 min-1), and anthracene (Ant) was almost completely degraded after 16 h of irradiation in HE soil. Two quantitative structure-activity relationship (QSAR) models were established by the multiple linear regression (MLR) method. The developed QSAR models have good stability, robustness and predictability. The model revealed that the main factors affecting the photodegradation of PAHs are soil organic matter (SOM) and the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (Egap). SOM can function as a photosensitizer to induce the production of active species for photodegradation, thus favoring the photodegradation of PAHs. In addition, compounds with lower Egap are less stable and more reactive, and thus are more prone to photodegradation. Finally, the QSAR model was optimized using machine learning approach. The results of this study provide basic information on the photodegradation of PAHs and have important significance for predicting the environmental behavior of PAHs in soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Relación Estructura-Actividad Cuantitativa , Fotólisis , Contaminantes del Suelo/análisis
13.
J Hazard Mater ; 466: 133542, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262317

RESUMEN

Oil spills are a global environmental protection challenge, and traditional adsorption materials have poor effect on low temperature and high viscosity marine oil spills. This article reports composite adsorption materials TDA/rGO@WS for viscous oil spills: loaded with rGO/TDA coating on a commercial biomass wood pulp sponge (WS), achieving Joule heating, photothermal effect and hydrophobic modification. The results showed that the TDA/rGO@WS has good photothermal conversion ability and Joule heating ability, and the temperature increased to 83.7 °C and 148 °C, respectively, under simulated solar irradiation and additional voltage at room temperature. The efficiency of adsorption at a low temperature of 5 °C increased by 22.41% at 1 sun and by 51.53% at 10 V. Temperature effectively reduced the viscosity of the offshore oil spill and ensures the efficient adsorption of oil spills at low temperatures promoted. The TDA/rGO@WS also showed good hydrophobicity (WCA=129°), excellent efficiency of water-oil separation (99.53%) and good adsorption capacity (9.4-13.68 g/g) for marine fuel oils. TDA/rGO@WS effectively solves the problem of cleaning up high-viscosity oil spills from ships in winter and polar waters, and proposes a new strategy for all-weather efficient treatment of oil spills at sea.

14.
Altern Ther Health Med ; 30(9): 437-441, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38294757

RESUMEN

Objective: This study aimed to analyze the diagnostic efficacy of serum biomarkers in liver cirrhosis patients categorized by Child-Pugh scores. Methods: An observational cross-sectional study design was employed. A total of 110 liver cirrhosis patients, classified according to Child-Pugh scores and 60 healthy individuals were included in this study. Serum levels of adenosine deaminase (ADA), adiponectin (APN), matrix metalloproteinase-2 (MMP-2), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured. Results: The levels of ADA, APN, MMP-2, ALP, ALT, and AST were significantly higher in the study group compared to the control group (P < .05). Furthermore, these levels increased with the severity of liver cirrhosis, with higher levels observed in patients with Child-Pugh class C. The positive diagnostic rates for joint detection in Child-Pugh class A, B, and C were 93.75% (30/32), 100% (34/34), and 100% (44/44), respectively. Conclusions: Combined detection of serum biomarkers improves the diagnostic efficacy of liver cirrhosis. The diagnostic rates were higher when considering Child-Pugh scores, with the highest rates observed in class C.


Asunto(s)
Biomarcadores , Cirrosis Hepática , Índice de Severidad de la Enfermedad , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/diagnóstico , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Adiponectina/sangre , Adulto , Aspartato Aminotransferasas/sangre , Anciano , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Adenosina Desaminasa/sangre , Metaloproteinasa 2 de la Matriz/sangre
15.
Ren Fail ; 45(1): 2209392, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37199269

RESUMEN

Objectives: Membranous nephropathy (MN) and minimal change disease (MCD) are two common types of nephrotic syndrome that have similar clinical presentations but require different treatment strategies. Currently, the definitive diagnosis for these conditions relies on invasive renal biopsy, which can be limited in clinical practice.Methods: In this study, we aimed to differentiate idiopathic MN (IMN) from MCD using clinical data and gut microbiota. We collected clinical data and stool samples from 115 healthy individuals, 115 IMN, and 45 MCD at the onset of disease and performed 16S rRNA sequencing. Through machine learning methods including random forest, logistic regression, and support vector machine, a classifier to differentiate IMN from MCD was constructed.Results: Baseline clinical data comparing the IMN and MCD groups showed that the MCD had higher levels of hemoglobin, uric acid, cystatin C, ß2-microglobulin, α1-microglobulin, total cholesterol, and low-density lipoprotein and lower levels of albumin and CD4+ T-cell counts. The gut microbiota of the two groups differed at all levels of the phylum and genus. Differential gut microbiota may disturb the integrity of the intestinal wall and lead to the passage of inflammatory mediators through the intestinal barrier, causing kidney injury. We constructed a noninvasive classifier with a discrimination efficacy of 0.939 that combined the clinical data and gut microbiota information to identify IMN and MCD.Conclusions: The classifier of the gut microbiota combined with clinical indicators has achieved good performance in identifying IMN and MCD, which provides a new approach for the noninvasive discrimination of different pathological types of kidney disease.


Asunto(s)
Microbioma Gastrointestinal , Glomerulonefritis Membranosa , Nefrosis Lipoidea , Humanos , Glomerulonefritis Membranosa/diagnóstico , Glomerulonefritis Membranosa/patología , Nefrosis Lipoidea/diagnóstico , ARN Ribosómico 16S/genética , Riñón/patología
16.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499551

RESUMEN

Juglans mandshurica has strong freezing resistance, surviving temperatures as low as -40 °C, making it an important freeze tolerant germplasm resource of the genus Juglans. APETALA2/ethylene responsive factor (AP2/ERF) is a plant-specific superfamily of transcription factors that regulates plant development, growth, and the response to biotic and abiotic stress. In this study, phylogenetic analysis was used to identify 184 AP2/ERF genes in the J. mandshurica genome, which were classified into five subfamilies (JmAP2, JmRAV, JmSoloist, JmDREB, and JmERF). A significant amount of discordance was observed in the 184 AP2/ERF genes distribution of J. mandshurica throughout its 16 chromosomes. Duplication was found in 14 tandem and 122 segmental gene pairs, which indicated that duplications may be the main reason for JmAP2/ERF family expansion. Gene structural analysis revealed that 64 JmAP2/ERF genes contained introns. Gene evolution analysis among Juglandaceae revealed that J. mandshurica is separated by 14.23 and 15 Mya from Juglans regia and Carya cathayensis, respectively. Based on promoter analysis in J. mandshurica, many cis-acting elements were discovered that are related to light, hormones, tissues, and stress response processes. Proteins that may contribute to cold resistance were selected for further analysis and were used to construct a cold regulatory network based on GO annotation and JmAP2/ERF protein interaction network analysis. Expression profiling using qRT-PCR showed that 14 JmAP2/ERF genes were involved in cold resistance, and that seven and five genes were significantly upregulated under cold stress in female flower buds and phloem tissues, respectively. This study provides new light on the role of the JmAP2/ERF gene in cold stress response, paving the way for further functional validation of JmAP2/ERF TFs and their application in the genetic improvement of Juglans and other tree species.


Asunto(s)
Respuesta al Choque por Frío , Juglans , Respuesta al Choque por Frío/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Juglans/genética , Juglans/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Water Res ; 226: 119316, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369691

RESUMEN

As a class of emerging aquatic pollutants, alkylimidazole-based ionic liquids (AM-ILs) have received extensive attention due to the large acute toxicity to aquatic organisms. Therefore, in order to protect both aquatic organisms and human beings, it is necessary to seek an efficient and environmental-friendly technology for removal of AM-ILs from water bodies. In this work, we found that under simulated sunlight (Xe lamp) irradiation, periodate (KIO4, PI) could efficiently degrade 1-hexyl-2,3-dimethylimidazolium bromide ([HMMIm]Br), a representative AM-ILs with six carbon atoms in the side chain. Kinetics experiments on the degradation of [HMMIm]Br were performed, and the results showed that a high degradation efficiency (≥90.00%) of the cation ([HMMIm]+) was still maintained under harsh water conditions of strong acidity/alkaliny or with various non-target inorganic ions. More importantly, the anion of bromide ion (Br-) was not oxidized to the carcinogenic bromate (BrO3-) in current reaction system. The excited stated PI (marked as PI*) was detected by Laser flash photolysis, and it was an important reactive species for [HMMIm]+ degradation. As rationalized by theoretical calculations and scavenging experiments, the main oxidation mechanisms of [HMMIm]+ were hydroxyl radicals induced substitution reaction, PI* initiated electron and double oxygen transfer, and direct photolysis mediated chemical bond cleavage reaction, which contributed to 73%, 21%, and 6% of [HMMIm]+ degradation, respectively. Moreover, toxicity evaluation by ECOSAR software indicated that the oxidation products were generally less toxic to three aquatic organisms (fish, water flea, and green algae) than the target molecule [HMMIm]Br. In conclusion, this work proposed novel oxidation mechanisms of sunlight-activated PI system, and the findings may inspire further researches on the application of photoactivated hypervalent acids in water purification.


Asunto(s)
Líquidos Iónicos , Contaminantes Químicos del Agua , Animales , Humanos , Líquidos Iónicos/química , Luz Solar , Bromuros , Contaminantes Químicos del Agua/química , Fotólisis , Cinética , Imidazoles/química
18.
Front Pharmacol ; 13: 897167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225569

RESUMEN

Loss of podocyte is a characteristic pathological change of diabetic nephropathy (DN) which is associated with increased proteinuria. Many studies have shown that novel inhibitors of sodium-glucose cotransporter 2 (SGLT2-is), such as dapagliflozin, exert nephroprotective effect on delaying DN progression. However, the mechanisms underlying SGLT2-associated podocyte injury are still not fully elucidated. Here, we generated streptozotocin-induced DN models and treated them with dapagliflozin to explore the possible mechanisms underlying SGLT2 regulation. Compared to mice with DN, dapagliflozin-treated mice exhibited remission of pathological lesions, including glomerular sclerosis, thickening of the glomerular basement membrane (GBM), podocyte injury in the glomeruli, and decreased nephrotoxin levels accompanied by decreased SGLT2 expression. The mRNA expression profiles of these treated mice revealed the significance of the insulin-like growth factor-1 receptor (IGF1R)/PI3K regulatory axis in glomerular injury. KEGG analysis confirmed that the phosphatidylinositol signaling system and insulin signaling pathway were enriched. Western blotting showed that SGLT2-is inhibited the increase of mesenchymal markers (α-SMA, SNAI-1, and ZEB2) and the loss of podocyte markers (nephrin and E-cad). Additionally, SGLT2, IGF1R, phosphorylated PI3K, α-SMA, SNAI-1, and ZEB2 protein levels were increased in high glucose-stimulated human podocytes (HPC) and significantly decreased in dapagliflozin-treated (50 nM and 100 nM) or OSI-906-treated (inhibitor of IGF1R, 60 nM) groups. However, the use of both inhibitors did not enhance this protective effect. Next, we analyzed urine and plasma samples from a cohort consisting of 13 healthy people and 19 DN patients who were administered with (n = 9) or without (n = 10) SGLT2 inhibitors. ELISA results showed decreased circulating levels of IGF1 and IGF2 in SGLT2-is-treated DN patients compared with DN patients. Taken together, our study reported the key role of SGLT2/IGF1R/PI3K signaling in regulating podocyte epithelial-mesenchymal transition (EMT). Modulating IGF1R expression may be a novel approach for DN therapy.

19.
Adv Sci (Weinh) ; 9(28): e2201581, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975460

RESUMEN

Membranous nephropathy (MN) is a common cause of nephrotic syndrome. The aim is to establish a non-invasive diagnostic model of MN using differential gut microbiome analysis, and to explore the relationship between the gut microbiome and MN pathogenesis in vivo. 825 fecal samples from MN patients and healthy participants are collected from multiple medical centers across China. Key operational taxonomic units (OTUs) obtained through 16S rRNA sequencing are used to establish a diagnostic model. A rat model of MN is developed to explore the relationship between the gut microbiome and the pathogenesis of MN. The diversity and richness of the gut microbiome are significantly lower in patients with MN than in healthy individuals. The diagnostic model based on seven OTUs achieves an excellent efficiency of 98.36% in the training group and also achieves high efficiency in cross-regional cohorts. In MN rat model, gut microbiome elimination prevents model establishment, but fecal microbiome transplantation restores the phenotype of protein urine. Gut microbiome analysis can be used as a non-invasive tool for MN diagnosis. The onset of MN depends on the presence of naturally colonized microbiome. Early intervention in the gut microbiome may help reduce urinary protein level in MN.


Asunto(s)
Microbioma Gastrointestinal , Glomerulonefritis Membranosa , Microbiota , Animales , Heces , Glomerulonefritis Membranosa/diagnóstico , ARN Ribosómico 16S/genética , Ratas
20.
Front Bioeng Biotechnol ; 10: 911701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733524

RESUMEN

Populus alba × Populus glandulosa (84K poplar) is model material with excellent genetic engineering resource and ornamental value. In our study, AmRosea1 (Antirrhinum majus) was overexpressed in 84K poplar, and the transgenic 84K (AM) poplar with high content of anthocyanin exhibited red pigmentation leaves. The transcriptome analysis between wild type (WT) and AM showed that 170 differentially expressed genes (DEGs) (86 up-regulated and 84 down-regulated) were found, and some DEGs were involved in flavone and flavonol biosynthesis, flavonoid biosynthesis and anthocyanin biosynthesis. The metabolome analysis showed that 13 anthocyanins-related differentially accumulated metabolites (DAMs) were detected in AM. The correlation analysis between DEGs and DAMs were performed, and the results revealed that 18 DEGs, including 11 MYB genes, two BZ1 genes, one FG2 gene, one ANS gene, and three IF7MAT genes, were negatively or positively correlated with 13 DAMs. The phylogenetic analysis demonstrated that there was high homology between AmRosea1 and PagMYB113, and MYB113 co-expressed with BZ1, ANS and DFR directly. Our results elucidated the molecular mechanism of plant color change mediated by anthocyanin biosynthesis pathway, which laid the foundation for the development and utilization of colorful woody plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...