Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Am Chem Soc ; 146(18): 12850-12856, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38648558

RESUMEN

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

2.
Regen Ther ; 25: 344-354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362337

RESUMEN

Intervertebral disc degeneration (IDD) is one of the major leading causes of back pain affecting the patient's quality of life. However, the roles of circular RNA (circRNA) in IDD remains unclear. This study aimed to explore the function and underlying mechanism of circ_0036763 in IDD. In this study, expressions of circ_0036763, U2 small nuclear RNA auxiliary factor 2 (U2AF2), miR-583 and aggrecan (ACAN) in primary human nucleus pulposus cells (HNPCs) derived from IDD patients and healthy controls were detected by quantitative real-time reverse transcription-PCR (qRT-PCR) or Western blot (WB). The relationship between pre-circ_0036763 and U2AF2, circ_0036763 and miR-583, miR-583 and ACAN mRNA was determined by bioinformatic analysis, miRNA pull down or RNA immunoprecipitation (RIP) assay. The expressions of Collagen I and Collagen II were evaluated by WB. Co-culture of bone marrow mesenchymal stem cells (bMSCs) or bMSCs-derived exosomes and HNPCs were performed to identify the effect of U2AF2 on the mature of circ_0036763 and ACAN. Results indicated that circ_0036763, U2AF2 and ACAN were downregulated while miR-583 was upregulated in HNPCs derived from IDD patients compared with that in normal HNPCs. Besides, overexpression of circ_0036763 elevated the expressions of ACAN and Collagen II whereas reduced Collagen I expression in HNPCs. Moreover, U2AF2 promoted the mature of circ_0036763, and circ_0036763 positively regulated ACAN by directly sponging miR-583. Furthermore, exosomal U2AF2 derived from bMSCs could increase U2AF2 levels in HNPCs and subsequently regulate the expression of ACAN by circ_0036763/miR-583 axis. In summary, circ_0036763 modified by exosomal U2AF2 derived from bMSCs alleviated IDD through regulating miR-583/ACAN axis in HNPCs. Thus, this study might provide novel therapeutic targets for IDD.

3.
Plant Commun ; 5(4): 100819, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38217289

RESUMEN

Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis. Loss of ULT1 function significantly increases rosette leaf, petal, silique, and seed size, whereas overexpression of ULT1 results in reduced organ size. ULT1 associates with TCP14 and TCP15 to co-regulate cell size by affecting cellular endoreduplication. Transcriptome analysis revealed that ULT1 and TCP14/15 regulate common target genes involved in endoreduplication and leaf development. ULT1 can be recruited by TCP14/15 to promote lysine 4 of histone H3 trimethylation at target genes, activating their expression to determine final cell size. Furthermore, we found that ULT1 influences the interaction of DA1 and TCP14/15 and antagonizes the effect of DA1 on TCP14/15 degradation. Collectively, our findings reveal a novel epigenetic mechanism underlying the regulation of organ size in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo
4.
New Phytol ; 240(2): 577-596, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37583092

RESUMEN

Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.


Asunto(s)
Perfilación de la Expresión Génica , Zea mays , Zea mays/genética , Zea mays/metabolismo , Activación Transcripcional/genética , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Eur J Med Res ; 28(1): 25, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639666

RESUMEN

Little is known about the impact of multiple trauma (MT)-related systemic hypoxia on osseous protein concentration of the hypoxia transcriptome. To shed light on this issue, we investigated erythropoietin (Epo), erythropoietin receptor (EpoR), and Y-box binding protein 1 (YB-1) concentrations in the fracture zone in a porcine MT + traumatic hemorrhage (TH) model. Sixteen male domestic pigs were randomized into two groups: an MT + TH group and a sham group. A tibia fracture, lung contusion, and TH were induced in the MT + TH group. The total observation period was 72 h. YB-1 concentrations in bone marrow (BM) were significantly lower in the fracture zone of the MT + TH animals than in the sham animals. Significant downregulation of BM-localized EpoR concentration in both unfractured and fractured bones was observed in the MT + TH animals relative to the sham animals. In BM, Epo concentrations were higher in the fracture zone of the MT + TH animals compared with that in the sham animals. Significantly higher Epo concentrations were detected in the BM of fractured bone compared to that in cortical bone. Our results provide the first evidence that MT + TH alters hypoxia-related protein concentrations. The impacts of both the fracture and concomitant injuries on protein concentrations need to be studied in more detail to shed light on the hypoxia transcriptome in fractured and healthy bones after MT + TH.


Asunto(s)
Eritropoyetina , Fracturas Óseas , Traumatismo Múltiple , Masculino , Porcinos , Animales , Receptores de Eritropoyetina/metabolismo , Eritropoyetina/genética , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Hipoxia
6.
Mol Plant ; 16(2): 354-373, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36447436

RESUMEN

Plant height (PH) is an essential trait in maize (Zea mays) that is tightly associated with planting density, biomass, lodging resistance, and grain yield in the field. Dissecting the dynamics of maize plant architecture will be beneficial for ideotype-based maize breeding and prediction, as the genetic basis controlling PH in maize remains largely unknown. In this study, we developed an automated high-throughput phenotyping platform (HTP) to systematically and noninvasively quantify 77 image-based traits (i-traits) and 20 field traits (f-traits) for 228 maize inbred lines across all developmental stages. Time-resolved i-traits with novel digital phenotypes and complex correlations with agronomic traits were characterized to reveal the dynamics of maize growth. An i-trait-based genome-wide association study identified 4945 trait-associated SNPs, 2603 genetic loci, and 1974 corresponding candidate genes. We found that rapid growth of maize plants occurs mainly at two developmental stages, stage 2 (S2) to S3 and S5 to S6, accounting for the final PH indicators. By integrating the PH-association network with the transcriptome profiles of specific internodes, we revealed 13 hub genes that may play vital roles during rapid growth. The candidate genes and novel i-traits identified at multiple growth stages may be used as potential indicators for final PH in maize. One candidate gene, ZmVATE, was functionally validated and shown to regulate PH-related traits in maize using genetic mutation. Furthermore, machine learning was used to build predictive models for final PH based on i-traits, and their performance was assessed across developmental stages. Moderate, strong, and very strong correlations between predictions and experimental datasets were achieved from the early S4 (tenth-leaf) stage. Colletively, our study provides a valuable tool for dissecting the spatiotemporal formation of specific internodes and the genetic architecture of PH, as well as resources and predictive models that are useful for molecular design breeding and predicting maize varieties with ideal plant architectures.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Zea mays/genética , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Adv Sci (Weinh) ; : e2204885, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36382558

RESUMEN

Methylating RNA post-transcriptionally is emerging as a significant mechanism of gene regulation in eukaryotes. The crosstalk between RNA methylation and histone modification is critical for chromatin state and gene expression in mammals. However, it is not well understood mechanistically in plants. Here, the authors report a genome-wide correlation between RNA 5-cytosine methylation (m5 C) and histone 3 lysine27 trimethylation (H3K27me3) in Arabidopsis. The plant-specific Polycomb group (PcG) protein EMBRYONIC FLOWER1 (EMF1) plays dual roles as activators or repressors. Transcriptome-wide RNA m5 C profiling revealed that m5 C peaks are mostly enriched in chromatin regions that lacked H3K27me3 in both wild type and emf1 mutants. EMF1 repressed the expression of m5 C methyltransferase tRNA specific methyltransferase 4B (TRM4B) through H3K4me3, independent of PcG-mediated H3K27me3 mechanism. The 5-Cytosine methylation on targets is increased in emf1 mutants, thereby decreased the mRNA transcripts of photosynthesis and chloroplast genes. In addition, impairing EMF1 activity reduced H3K27me3 levels of PcG targets, such as starch genes, which are de-repressed in emf1 mutants. Both EMF1-mediated promotion and repression of gene activities via m5 C and H3K27me3 are required for normal vegetative growth. Collectively, t study reveals a previously undescribed epigenetic mechanism of RNA m5 C modifications and histone modifications to regulate gene expression in eukaryotes.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36429959

RESUMEN

Trace metal pollution in coastal seas has been of great concern because of its persistence, toxicity, and biological accumulation through the food chain. The role of sea ice in trace metal transport and distribution in Liaodong Bay is still unknown. Sea ice and water samples were collected in Liaodong Bay in February 2021 to assess the distributions of Cu, Pb, Cd, Zn, Cr and Hg during the frozen season. Total dissolved (<0.45 µm) and particulate (>0.45 µm) heavy metal concentrations were measured by atomic absorption spectrophotometry (Cu, Pb, Cd, Zn and Cr) and atomic fluorescence spectrophotometer (Hg). The ice held significantly higher levels of total Cr when compared to water. There were no significant differences in total concentrations of Cu, Pb, Cd, Zn and Hg between water and ice samples. An analysis of dissolved-to-total metal ratios shows that all studied metals in the dissolved phase, except Hg, are found exclusively in Liaodong Bay nearshore ice as a result of desalination. Concentrations of particulate metals are higher in sea ice than in seawater due to suspended/bed sediment entrainment and atmospheric deposition. The partitioning coefficients of six trace metals are not increased with the increase in the concentration of particulate matter in sea ice due to sediment accumulation. The redistribution of trace metals between seawater and ice was a result of comprehensive effects of physico-chemical processes and environmental factors, such as chemical oxygen demand, salinity, and suspended particulate material.


Asunto(s)
Mercurio , Oligoelementos , Contaminantes Químicos del Agua , Bahías , Monitoreo del Ambiente , Agua/análisis , Contaminantes Químicos del Agua/análisis , Cadmio/análisis , Plomo/análisis , Oligoelementos/análisis , Mercurio/análisis
9.
Plant Biotechnol J ; 20(12): 2313-2331, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36070002

RESUMEN

Maize (Zea mays) is an important cereal crop with suitable stalk formation which is beneficial for acquiring an ideal agronomic trait to resist lodging and higher planting density. The elongation pattern of stalks arises from the variable growth of individual internodes driven by cell division and cell expansion comprising the maize stalk. However, the spatiotemporal dynamics and regulatory network of the maize stalk development and differentiation process remain unclear. Here, we report spatiotemporally resolved transcriptomes using all internodes of the whole stalks from developing maize at the elongation and maturation stages. We identified four distinct groups corresponding to four developmental zones and nine specific clusters with diverse spatiotemporal expression patterns among individual internodes of the stalk. Through weighted gene coexpression network analysis, we constructed transcriptional regulatory networks at a fine spatiotemporal resolution and uncovered key modules and candidate genes involved in internode maintenance, elongation, and division that determine stalk length and thickness in maize. Further CRISPR/Cas9-mediated knockout validated the function of a cytochrome P450 gene, ZmD1, in the regulation of stalk length and thickness as predicted by the WGCN. Collectively, these results provide insights into the high genetic complexity of stalk development and the potentially valuable resources with ideal stalk lengths and widths for genetic improvements in maize.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/genética , Transcriptoma/genética , Reproducción , Redes Reguladoras de Genes/genética , Grano Comestible , Regulación de la Expresión Génica de las Plantas/genética
11.
Sci China Life Sci ; 65(11): 2191-2204, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35851940

RESUMEN

Efforts have been directed to redesign crops with increased yield, stress adaptability, and nutritional value through synthetic biology-the application of engineering principles to biology. A recent expansion in our understanding of how epigenetic mechanisms regulate plant development and stress responses has unveiled a new set of resources that can be harnessed to develop improved crops, thus heralding the promise of "synthetic epigenetics." In this review, we summarize the latest advances in epigenetic regulation and highlight how innovative sequencing techniques, epigenetic editing, and deep learning-driven predictive tools can rapidly extend these insights. We also proposed the future directions of synthetic epigenetics for the development of engineered smart crops that can actively monitor and respond to internal and external cues throughout their life cycles.


Asunto(s)
Epigénesis Genética , Epigenómica , Productos Agrícolas/genética , Biología Sintética/métodos , Desarrollo de la Planta/genética , Fitomejoramiento
12.
Plant Commun ; 3(5): 100347, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35690904

RESUMEN

This study reports the identification of the rice open reading frame Semi-Dwarf in chr8 (SD8) that encodes a putative ortholog of Arabidopsis thaliana ABCB1. Genome editing of SD8 leads to optimized rice architecture by reducing plant height and flag-leaf angle without yield penalty. Rice SD8 knockouts may also have the potential for increased yield under high density planting.


Asunto(s)
Arabidopsis , Oryza , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética
13.
Science ; 375(6585): 1188-1191, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35271314

RESUMEN

Polyethylene production through catalytic ethylene polymerization is one of the most common processes in the chemical industry. The popular Cossee-Arlman mechanism hypothesizes that the ethylene be directly inserted into the metal-carbon bond during chain growth, which has been awaiting microscopic and spatiotemporal experimental confirmation. Here, we report an in situ visualization of ethylene polymerization by scanning tunneling microscopy on a carburized iron single-crystal surface. We observed that ethylene polymerization proceeds on a specific triangular iron site at the boundary between two carbide domains. Without an activator, an intermediate, attributed to surface-anchored ethylidene (CHCH3), serves as the chain initiator (self-initiation), which subsequently grows by ethylene insertion. Our finding provides direct experimental evidence of the ethylene polymerization pathway at the molecular level.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35010866

RESUMEN

Spatial-seasonal variations in dissolved heavy metals in surface seawater were analyzed based on surveys at 87 sampling sites and water samples from six rivers across Liaodong Bay. The concentrations of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) had ranges of 0.20-40.00 (5.45 ± 5.67), 0.51-33.64 (4.68 ± 3.93), 0.03-13.47 (2.22 ± 2.01), and 0.50-80.09 µg/L (14.22 ± 16.32), respectively, throughout the four seasons of 2020. The trace metal concentration showed a spatial gradient of high to low from river to estuary and from inshore to offshore areas. A combination of pollution levels and marine sensitivity was employed to assess the pollution degree of the heavy metals. As a whole, the single pollution factors of trace metals in Liaodong Bay were ranged in the order Pb > Zn > Cu > Cd. The total pollution degree was relatively high in autumn and summer due to increased riverine inputs after the rainy season, while relatively low in spring and winter. These findings provide baseline data for future targeting policies to protect marine environments in Liaodong Bay.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Bahías , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Estaciones del Año , Contaminantes Químicos del Agua/análisis
16.
New Phytol ; 232(2): 880-897, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34287908

RESUMEN

Epigenetic modifications function in gene transcription, RNA metabolism, and other biological processes. However, multiple factors currently limit the scientific utility of epigenomic datasets generated for plants. Here, using deep-learning approaches, we developed a Smart Model for Epigenetics in Plants (SMEP) to predict six types of epigenomic modifications: DNA 5-methylcytosine (5mC) and N6-methyladenosine (6mA) methylation, RNA N6-methyladenosine (m6 A) methylation, and three types of histone modification. Using the datasets from the japonica rice Nipponbare, SMEP achieved 95% prediction accuracy for 6mA, and also achieved around 80% for 5mC, m6 A, and the three types of histone modification based on the 10-fold cross-validation. Additionally, > 95% of the 6mA peaks detected after a heat-shock treatment were predicted. We also successfully applied the SMEP for examining epigenomic modifications in indica rice 93-11 and even the B73 maize line. Taken together, we show that the deep-learning-enabled SMEP can reliably mine epigenomic datasets from diverse plants to yield actionable insights about epigenomic sites. Thus, our work opens new avenues for the application of predictive tools to facilitate functional research, and will almost certainly increase the efficiency of genome engineering efforts.


Asunto(s)
Aprendizaje Profundo , Oryza , Metilación de ADN/genética , Epigénesis Genética , Epigenómica , Genoma , Oryza/genética
17.
Ecotoxicol Environ Saf ; 220: 112409, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34116332

RESUMEN

A novel coronavirus (SARS-CoV-2) has caused more than 150 million confirmed infections worldwide, while it is not clear whether it affects the coastal waters. This paper proposed a biophysical model based on 16 scenarios with different virus half-life parameters to assess potential viral contamination from 25 municipal sewage outfalls into the Bohai Sea. Viral concentration maps showing spatial and temporal changes are provided based on a biophysical model under multiple scenarios. Results demonstrate that adjacent sea areas can become exposed to SARS-CoV-2 via water-borne transport from outfalls, with a higher risk in winter, because SARS-CoV-2 can be highly stable at low temperature. As coastal waters are the ultimate sink for wastewater and the epidemic will last for long time, this work is of great importance to raise awareness, identify vulnerable areas for marine mammals, and avoid the risk of exposure of tourists at bathing beach.


Asunto(s)
COVID-19/transmisión , SARS-CoV-2 , Agua de Mar/virología , Aguas del Alcantarillado/virología , Aguas Residuales/virología , Animales , Humanos , Estaciones del Año , Análisis Espacio-Temporal , Temperatura
18.
Medicine (Baltimore) ; 100(23): e26333, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34115049

RESUMEN

ABSTRACT: Subacromial impingement syndrome (SIS) after hook plate fixation for acromioclavicular joint (AC) dislocation was the most common complication. However, the researches on its' influential factors were rare. The purpose of this study was to identify the risk factors by analyzing the influencing factors of postoperative SIS and minimize the incidence of SIS in clinical surgery.We retrospectively analyzed the prospectively collected data from 330 consecutive patients with AC joint dislocation between August 2014 and August 2017 at our institute. The SIS was presented as the dependent variable at the last follow-up when the internal fixation was removed. The independent variables included age, gender, body-mass index (BMI), smoking status, alcohol consumption, type of injury, Rockwood Classification, site of injury, operation time, injury-to-surgery, the distance between the hook body and the acromion (DBA), the depth of hook tip (DHT), the distance between the hook plate and the humeral head (DHH), the distance between the acromion and the humeral head (DAH), the hook plate angle (AHP) and acromial shape. Logistic regression analysis was performed to identify independent influential factors of SIS.A total of 312 cases were included and 18 cases were lost. The follow-up rate was 94.5%. In without SIS group, there were 225 cases (123 males and 102 females). In with SIS group, a total of 87 cases were included (56 males and 31 females). The incidence of SIS was 27.8%. DHT (OR = 9.385, 95% CI = 4.883 to 18.040, P < .001) and DBA (OR = 2.444, 95% CI = 1.591 to 3.755, P < .001) were the significant independent risk factor for SIS of AC dislocation treat with hook plate. DAH (OR = 0.597, 95% CI = 0.396 to 0.900, P = .014) and acromial shape with flat and straight (OR = 0.325, 95% CI = 0.135 to 0.785, P = .012) were also independent factors of SIS, but they were all protective.The SIS had a high incidence in fixation of clavicular hook plate for AC dislocation. DHT and DBA were two independent risk factors, DAH and acromial shape with flat and straight were two independent protective factors for SIS. In clinical surgery, we should avoid risk factors to reduce the incidence of SIS.


Asunto(s)
Articulación Acromioclavicular , Placas Óseas , Fijadores Internos , Luxaciones Articulares , Procedimientos Ortopédicos/efectos adversos , Complicaciones Posoperatorias , Síndrome de Abducción Dolorosa del Hombro , Articulación Acromioclavicular/diagnóstico por imagen , Articulación Acromioclavicular/lesiones , Articulación Acromioclavicular/cirugía , China/epidemiología , Femenino , Humanos , Luxaciones Articulares/diagnóstico , Luxaciones Articulares/epidemiología , Luxaciones Articulares/cirugía , Masculino , Persona de Mediana Edad , Procedimientos Ortopédicos/instrumentación , Procedimientos Ortopédicos/métodos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Estudios Retrospectivos , Ajuste de Riesgo/métodos , Factores de Riesgo , Síndrome de Abducción Dolorosa del Hombro/diagnóstico , Síndrome de Abducción Dolorosa del Hombro/epidemiología , Síndrome de Abducción Dolorosa del Hombro/etiología , Síndrome de Abducción Dolorosa del Hombro/prevención & control
19.
J Healthc Eng ; 2021: 5534227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859806

RESUMEN

In order to carry out the evaluation of cartilaginous endplate degeneration based on magnetic resonance imaging (MRI), this paper retrospectively analyzed the MRI data from 120 cases of patients who were diagnosed as lumbar intervertebral disc degeneration and underwent MRI examinations in the designated hospital of this study from June 2018 to June 2020. All cases underwent conventional sagittal and transverse T1WI and T2WI scans, and some cases were added with sagittal fat-suppression T2WI scans; then, the number of degenerative cartilaginous endplates and its ratio to degenerative lumbar intervertebral discs were counted and calculated, and the T1WI and T2WI signal characteristics of each degenerative cartilage endplate and its correlation with cartilaginous endplate degeneration were summarized, compared, and analyzed to evaluate the cartilaginous endplate degeneration by those magnetic resonance information. The study results show that there were 33 cases of cartilaginous endplate degeneration, accounting for 27.50% of all those 120 patients with lumbar intervertebral disc degeneration (54 degenerative endplates in total), including 9 cases with low T1WI and high T2WI signals, 5 cases with high T1WI and low T2WI signals, 12 cases with high and low mixed T1WI and high or mixed T2WI signals, and 4 cases with both low T1WI and T2WI signals. Therefore, MRI scanning can clearly present the abnormal signals of lumbar intervertebral disc and cartilaginous endplate degeneration, accurately identity their lesion locations, and type their degenerative characteristics, which may be best inspection method for the evaluation of cartilaginous endplate degeneration in the early diagnosis of intervertebral disc degeneration. The study results of this paper provide a reference for further researches on the evaluation of cartilaginous endplate degeneration based on magnetic resonance imaging.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
20.
Plant Cell ; 33(5): 1417-1429, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33647940

RESUMEN

Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Núcleo Celular/metabolismo , Daño del ADN , ADN Polimerasa I/metabolismo , Flores/fisiología , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutación/genética , Oryza/anatomía & histología , Oryza/citología , Fenotipo , Proteínas de Plantas/genética , Unión Proteica , Fase S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA