Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38415197

RESUMEN

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating "avatars" (herein defined as an extension of "digital twins") of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.

2.
Nat Commun ; 15(1): 890, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291059

RESUMEN

Type 2 diabetes (T2D)-related fragility fractures represent an increasingly tough medical challenge, and the current treatment options are limited. Mechanical loading is essential for maintaining bone integrity, although bone mechano-responsiveness in T2D remains poorly characterized. Herein, we report that exogenous cyclic loading-induced improvements in bone architecture and strength are compromised in both genetically spontaneous and experimentally-induced T2D mice. T2D-induced reduction in bone mechano-responsiveness is directly associated with the weakened Ca2+ oscillatory dynamics of osteocytes, although not those of osteoblasts, which is dependent on PPARα-mediated specific reduction in osteocytic SERCA2 pump expression. Treatment with the SERCA2 agonist istaroxime was demonstrated to improve T2D bone mechano-responsiveness by rescuing osteocyte Ca2+ dynamics and the associated regulation of osteoblasts and osteoclasts. Moreover, T2D-induced deterioration of bone mechano-responsiveness is blunted in mice with osteocytic SERCA2 overexpression. Collectively, our study provides mechanistic insights into T2D-mediated deterioration of bone mechano-responsiveness and identifies a promising countermeasure against T2D-associated fragility fractures.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteocitos , Animales , Ratones , Huesos , Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Osteoblastos/metabolismo , Osteocitos/metabolismo
3.
JBMR Plus ; 7(12): e10825, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130761

RESUMEN

Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts. Anti-Siglec-15 antibody (Ab) has been shown to inhibit osteoclast maturation and bone resorption while maintaining osteoblast activity, which is distinct from current antiresorptive agents that inhibit the activity of both osteoclasts and osteoblasts. The goal of the present study is to test a Siglec-15 Ab (NP159) as a new treatment option to prevent bone loss in an acute SCI model. To this end, 4-month-old male Wistar rats underwent complete spinal cord transection and were treated with either vehicle or NP159 at 20 mg/kg once every 2 weeks for 8 weeks. SCI results in significant decreases in bone mineral density (BMD, -18.7%), trabecular bone volume (-43.1%), trabecular connectivity (-59.7%), and bone stiffness (-76.3%) at the distal femur. Treatment with NP159 almost completely prevents the aforementioned deterioration of bone after SCI. Blood and histomorphometric analyses revealed that NP159 is able to greatly inhibit bone resorption while maintaining bone formation after acute SCI. In ex vivo cultures of bone marrow cells, NP159 reduces osteoclastogenesis while increasing osteoblastogenesis. In summary, treatment with NP159 almost fully prevents sublesional loss of BMD and metaphysis trabecular bone volume and preserves bone strength in a rat model of acute SCI. Because of its unique ability to reduce osteoclastogenesis and bone resorption while promoting osteoblastogenesis to maintain bone formation, Siglec-15 Ab may hold greater promise as a therapeutic agent, compared with the exclusively antiresorptive or anabolic agents that are currently used, in mitigating the striking bone loss that occurs after SCI or other conditions associated with severe immobilization. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

4.
J Bone Miner Res ; 38(1): 35-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335582

RESUMEN

Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in skeletal microstructure. We have reported that sequential treatment with teriparatide and denosumab improves central skeletal bone mineral density (BMD) by dual-energy X-ray absorptiometry and central QCT in PreMenIOP. We conducted preplanned analyses of high-resolution peripheral quantitative computed tomography (HR-pQCT) scans from teriparatide and denosumab extension studies to measure effects on volumetric BMD (vBMD), microarchitecture, and estimated strength at the distal radius and tibia. Of 41 women enrolled in the parent teriparatide study (20 mcg daily), 34 enrolled in the HR-pQCT study. HR-pQCT participants initially received teriparatide (N = 24) or placebo (N = 10) for 6 months; all then received teriparatide for 24 months. After teriparatide, 26 enrolled in the phase 2B denosumab extension (60 mg q6M) for 24 months. Primary outcomes were percentage change in vBMD, microstructure, and stiffness after teriparatide and after denosumab. Changes after sequential teriparatide and denosumab were secondary outcomes. After teriparatide, significant improvements were seen in tibial trabecular number (3.3%, p = 0.01), cortical area and thickness (both 2.7%, p < 0.001), and radial trabecular microarchitecture (number: 6.8%, thickness: 2.2%, separation: -5.1%, all p < 0.02). Despite increases in cortical porosity and decreases in cortical density, whole-bone stiffness and failure load increased at both sites. After denosumab, increases in total (3.5%, p < 0.001 and 3.3%, p = 0.02) and cortical vBMD (1.7% and 3.2%; both p < 0.01), and failure load (1.1% and 3.6%; both p < 0.05) were seen at tibia and radius, respectively. Trabecular density (3.5%, p < 0.001) and number (2.4%, p = 0.03) increased at the tibia, while thickness (3.0%, p = 0.02) increased at the radius. After 48 months of sequential treatment, significant increases in total vBMD (tibia: p < 0.001; radius: p = 0.01), trabecular microstructure (p < 0.05), cortical thickness (tibia: p < 0.001; radius: p = 0.02), and whole bone strength (p < 0.02) were seen at both sites. Significant increases in total vBMD and bone strength parameters after sequential treatment with teriparatide followed by denosumab support the use of this regimen in PreMenIOP. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoporosis , Teriparatido , Femenino , Humanos , Absorciometría de Fotón , Huesos/diagnóstico por imagen , Densidad Ósea , Denosumab/farmacología , Denosumab/uso terapéutico , Osteoporosis/tratamiento farmacológico , Radio (Anatomía)/diagnóstico por imagen , Teriparatido/farmacología , Teriparatido/uso terapéutico , Tibia/diagnóstico por imagen
5.
Bone ; 167: 116638, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464243

RESUMEN

Anterior cruciate ligament (ACL) tear leads to post-traumatic osteoarthritis (PTOA), a significant clinical burden worldwide that currently has no cure. Recent studies suggest a role of subchondral bone adaptations in the development of PTOA. Particularly, microstructural changes in the rod-and-plate microstructure of subchondral bone may precede and contribute to OA progression. In this study, we quantified microstructural changes in subchondral trabecular rods and plates after ACL-transection for the first time in the well-established preclinical canine model of PTOA and investigated the therapeutic potentials of a bisphosphonate (zoledronate) and NSAID treatment (meloxicam). Unilateral hindlimb ACL transection was performed on skeletally-mature (2-year-old, N = 20) and juvenile (10-month-old, N = 20) male beagles. Animals were assigned to 4 groups (N = 5): ACLT, un-operated control, ACLT with zoledronate, and ACLT with meloxicam treatment. Subchondral bone microstructure was evaluated by micro-computed tomography and cartilage integrity was evaluated histologically. We found that ACL-induced subchondral bone changes depended on skeletal maturity of animals. In mature animals, significant loss of trabecular plates that resulted in reduced PR ratio occurred at Month 1 and persisted until Month 8. Zoledronate treatment prevented trabecular plate loss while meloxicam treatment did not. Whether cartilage degeneration is also attenuated warrants further investigation. In juvenile animals that have not reached skeletal maturity, transient changes in trabecular plate and rod microstructure occurred at Month 3 but not Month 9. Neither zoledronate nor meloxicam treatment attenuated bone microstructural changes or cartilage damages. Findings from this study suggest that early inhibition of bone resorption by bisphosphonate after injury may be a promising therapeutic approach to prevent alterations in subchondral bone microstructure associated with PTOA. Our results further demonstrate that pathogenesis of PTOA may differ between adolescent and adult patients and therefore require distinct management strategies.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Osteoartritis , Animales , Masculino , Perros , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico , Microtomografía por Rayos X , Meloxicam/farmacología , Meloxicam/uso terapéutico , Huesos/patología , Osteoartritis/patología , Lesiones del Ligamento Cruzado Anterior/tratamiento farmacológico , Lesiones del Ligamento Cruzado Anterior/complicaciones , Cartílago Articular/patología , Modelos Animales de Enfermedad
6.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512405

RESUMEN

Disuse osteoporosis is a metabolic bone disease resulting from skeletal unloading (e.g., during extended bed rest, limb immobilization, and spaceflight), and the slow and insufficient bone recovery during reambulation remains an unresolved medical challenge. Here, we demonstrated that loading-induced increase in bone architecture/strength was suppressed in skeletons previously exposed to unloading. This reduction in bone mechanosensitivity was directly associated with attenuated osteocytic Ca2+ oscillatory dynamics. The unloading-induced compromised osteocytic Ca2+ response to reloading resulted from the HIF-1α/PDK1 axis-mediated increase in glycolysis, and a subsequent reduction in ATP synthesis. HIF-1α also transcriptionally induced substantial glutaminase 2 expression and thereby glutamine addiction in osteocytes. Inhibition of glycolysis by blockade of PDK1 or glutamine supplementation restored the mechanosensitivity in those skeletons with previous unloading by fueling the tricarboxylic acid cycle and rescuing subsequent Ca2+ oscillations in osteocytes. Thus, we provide mechanistic insight into disuse-induced deterioration of bone mechanosensitivity and a promising therapeutic approach to accelerate bone recovery after long-duration disuse.


Asunto(s)
Calcio , Glutamina , Calcio/metabolismo , Glutamina/farmacología , Glutamina/metabolismo , Osteocitos/metabolismo , Glucosa/metabolismo , Metabolismo Energético
7.
J Clin Invest ; 132(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194488

RESUMEN

The various functions of the skeleton are influenced by extracellular cues, hormones, and neurotransmitters. One type of neuronal regulation favors bone mass accrual by inhibiting sympathetic nervous system (SNS) activity. This observation raises questions about the transcriptional mechanisms regulating catecholamine synthesis. Using a combination of genetic and pharmacological studies, we found that the histone deacetylase sirtuin 1 (SIRT1) is a transcriptional modulator of the neuronal control of bone mass. Neuronal SIRT1 reduced bone mass by increasing SNS signaling. SIRT1 did so by increasing expression of monoamine oxidase A (MAO-A), a SIRT1 target that reduces brain serotonin levels by inducing its catabolism and by suppressing tryptophan hydroxylase 2 (Tph2) expression and serotonin synthesis in the brain stem. SIRT1 upregulated brain catecholamine synthesis indirectly through serotonin, but did not directly affect dopamine ß hydroxylase (Dbh) expression in the locus coeruleus. These results help us to understand skeletal changes associated with selective serotonin reuptake inhibitors (SSRIs) and may have implications for treating skeletal and metabolic diseases.


Asunto(s)
Envejecimiento , Serotonina , Sirtuina 1 , Animales , Ratones , Envejecimiento/genética , Catecolaminas , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Serotonina/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
8.
J Orthop Translat ; 32: 85-90, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35070712

RESUMEN

Osteoarthritis (OA) is no longer regarded as a simple wear-and-tear problem of articular cartilage. Instead, OA is a whole joint disorder involving both cartilaginous and non-cartilaginous tissues such as subchondral bone and synovium. Among them, subchondral bone undergoes constant remodeling in response to the changes of mechanical environment. Current understanding of subchondral bone disturbance in OA is limited to its link with an altered local mechanical loading as a result of ligament or meniscus injury. Very recently, hypertension, the most common vascular morbidity, has been emerged as an independent risk factor of OA. It might suggest a plausible role of systemic hemodynamic mechanical stress in subchondral bone remodeling and the pathogenesis of OA. However, their relationship remains not fully understood. Based on our preliminary clinical observation on the association of hemodynamic parameters with subchondral bone mass and microstructure in late-stage knee OA patients, we formulate a vascular etiology hypothesis of OA from a mechanobiology perspective. Noteworthily, hemodynamic stress associated with subchondral bone mineral density; yet compressive mechanical loading does not. Furthermore, hemodynamic parameters positively correlated with subchondral plate-like trabecular bone volume but negatively associated with rod-like trabecular bone volume. In contrast, compressive mechanical loading tends to increase both plate-like and rod-like trabecular bone volume. Taken together, it warrants further investigations into the distinct role of hemodynamic or compressive stress in shaping subchondral bone in the pathophysiology of OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This work provides a new insight, from the angle of biomechanics, into the emerging role of vascular pathologies, such as hypertension, in the pathogenesis of OA. It might open up a new avenue for the development of a mechanism-based discovery of novel diagnostics and therapeutics.

9.
Bone ; 154: 116187, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34530172

RESUMEN

BACKGROUND: Age-related trabecular microstructural deterioration and conversion from plate-like trabeculae to rod-like trabeculae occur because of unbalanced rapid remodeling. As denosumab achieves greater remodeling suppression and lower cortical porosity than alendronate, we hypothesized that denosumab might also preserve trabecular plate microstructure, bone stiffness and strength more effectively than alendronate. METHODS: In this post hoc analysis of a phase 2 study, postmenopausal women randomized to placebo (P, n = 74), denosumab (D, n = 72), or alendronate (A, n = 68). HR-pQCT scans of the distal radius and tibia were performed at baseline and Month-12 (M12). Trabecular compartment was subjected to Individual Trabecula Segmentation while finite element analysis was performed to estimate stiffness and strength. Percent change from baseline at M12 of each parameter was compared between patient groups. RESULTS: At the distal tibia, in the placebo group, plate surface area (pTb.S, -1.3%) decreased while rod bone volume fraction (rBV/TV, +4.5%) and number (rTb.N, +2.1%) increased. These changes were prevented by denosumab but persisted despite alendronate therapy (pTb.S: -1.7%; rBV/TV: +6.9%; rTb.N: +3.0%). Both treatments improved whole bone stiffness (D: +3.1%; A: +1.8%) and failure load (D: +3.0%; A: +2.2%); improvements using denosumab was significant compared to placebo (stiffness: p = 0.004; failure load: p = 0.003). At the distal radius, denosumab increased total trabecular bone volume fraction (BV/TV, +3.4%) and whole bone failure load (+4.0%), significantly different from placebo (BV/TV: p = 0.044; failure load: p = 0.046). Significantly different effects of either drug on plate and rod microstructure were not detected. CONCLUSIONS: Denosumab preserved trabecular plate microstructure. Alendronate did not. However, estimated strength did not differ between denosumab and alendronate treated groups.


Asunto(s)
Alendronato , Denosumab , Alendronato/farmacología , Alendronato/uso terapéutico , Densidad Ósea , Denosumab/farmacología , Denosumab/uso terapéutico , Femenino , Humanos , Radio (Anatomía)/diagnóstico por imagen , Tibia/diagnóstico por imagen
10.
Sci Adv ; 7(48): eabi5584, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826240

RESUMEN

Architectured materials offer tailored mechanical properties but are limited in engineering applications due to challenges in maintaining toughness across their attachments. The enthesis connects tendon and bone, two vastly different architectured materials, and exhibits toughness across a wide range of loadings. Understanding the mechanisms by which this is achieved could inform the development of engineered attachments. Integrating experiments, simulations, and previously unexplored imaging that enabled simultaneous observation of mineralized and unmineralized tissues, we identified putative mechanisms of enthesis toughening in a mouse model and then manipulated these mechanisms via in vivo control of mineralization and architecture. Imaging uncovered a fibrous architecture within the enthesis that controls trade-offs between strength and toughness. In vivo models of pathology revealed architectural adaptations that optimize these trade-offs through cross-scale mechanisms including nanoscale protein denaturation, milliscale load-sharing, and macroscale energy absorption. Results suggest strategies for optimizing architecture for tough bimaterial attachments in medicine and engineering.

11.
Bone ; 153: 116171, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34492358

RESUMEN

Intermittent injections of parathyroid hormone (PTH) and mechanical loading are both known to effect a net increase in bone mass. Fundamentally, bone metabolism can be divided into modeling (uncoupled formation or resorption) and remodeling (subsequent formation biologically coupled to resorption in space and time). Methods to delineate the bone response between these regimes are scant but have garnered recent attention and acceptance, and will be critical tools to properly assess short- and long-term efficacy of osteoporosis treatments. To this end, we employ a time-lapse micro-computed tomography strategy to quantify and localize modeling and remodeling volumes over 4 weeks of concurrent PTH treatment and mechanical loading. Modeled and remodeled volumes are probed for differences with respect to treatment, loading, and interactions thereof in trabecular and cortical bone compartments, which were further separated by plate/rod microarchitecture and periosteal/endosteal surfaces, respectively. Loading effects are further considered independently with regard to localized strain environments. Our findings indicate that in trabecular bone, PTH and loading stimulate anabolic modeling additively, and remodeling synergistically. PTH tends to lead to bone accumulation indiscriminate of trabecular microarchitecture, whereas loading tends to more strongly affect plates than rods. The cortical surfaces responded uniquely to PTH and loading, with synergistic effects on the periosteal surface for anabolic modeling, and on the endosteal surface for catabolic modeling. The increase in catabolic modeling due to loading, which is enhanced by PTH, is concentrated to areas of the endosteal surface under low strain and to our knowledge has not previously been reported. Taken together, the effects of PTH, loading, and their interactions, are shown to be dependent on the specific bone compartment and metabolic regime; this may explain some discrepancies in previously-reported findings.


Asunto(s)
Huesos , Hormona Paratiroidea , Densidad Ósea , Hueso Cortical , Microtomografía por Rayos X
12.
Biochem Biophys Res Commun ; 573: 145-150, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411897

RESUMEN

Osteocytes are accepted as the primary mechanosensing cell in bone, but how they translate mechanical signals into biochemical signals remains unclear. Adenylyl cyclases (AC) are enzymes that catalyze the production of second messenger cyclic adenosine monophosphate (cAMP). Osteocytes display a biphasic, cAMP response to fluid shear with an initial decrease in cAMP concentrations and then an increased concentration after sustained mechanical stimulation. To date, AC6, a calcium-inhibited AC, is the primary isoform studied in bone. Since osteocytes are calcium-responsive mechanosensors, we asked if a calcium-stimulated isoform contributes to mechanotransduction. Using a transcriptomic dataset of MLO-Y4 osteocyte-like cells from the NIH Gene Expression Omnibus, we identified AC3 as the only calcium-stimulated isoform expressed. We show that inhibiting AC3 in MLO-Y4 cells results in decreased cAMP-signaling with fluid shear and increased osteogenic response to fluid flow (measured as Ptgs2 expression) of longer durations, but not shorter. AC3 likely contributes to osteocyte mechanotransduction through a signaling axis involving the primary cilium and GSK3ß. We demonstrate that AC3 localizes to the primary cilium, as well as throughout the cytosol and that fluid-flow regulation of primary cilia length is altered with an AC3 knockdown. Regulation of GSK3ß is downstream of the primary cilium and cAMP signaling, and with western blots we found that GSK3ß inhibition by phosphorylation is increased after fluid shear in AC3 knockdown groups. Our data show that AC3 contributes to osteocyte mechanotransduction and warrants further investigation to pave the way to identifying new therapeutic targets to treat bone disease like osteoporosis.


Asunto(s)
Adenilil Ciclasas/metabolismo , Cilios/metabolismo , Osteocitos/metabolismo , Animales , Células Cultivadas , Mecanotransducción Celular , Ratones
13.
Front Bioeng Biotechnol ; 9: 658472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327193

RESUMEN

For decades, fetal bovine serum (FBS) has been used routinely for culturing many cell types, based on its empirically demonstrated effects on cell growth, and the lack of suitable non-xenogeneic alternatives. The FBS-based culture media do not represent the human physiological conditions, and can compromise biomimicry of preclinical models. To recapitulate in vitro the features of human bone and bone cancer, we investigated the effects of human serum and human platelet lysate on modeling osteogenesis, osteoclastogenesis, and bone cancer in two-dimensional (2D) and three-dimensional (3D) settings. For monitoring tumor growth within tissue-engineered bone in a non-destructive fashion, we generated cancer cell lines expressing and secreting luciferase. Culture media containing human serum enhanced osteogenesis and osteoclasts differentiation, and provided a more realistic in vitro mimic of human cancer cell proliferation. When human serum was used for building 3D engineered bone, the tissue recapitulated bone homeostasis and response to bisphosphonates observed in native bone. We found disparities in cell behavior and drug responses between the metastatic and primary cancer cells cultured in the bone niche, with the effectiveness of bisphosphonates observed only in metastatic models. Overall, these data support the utility of human serum for bioengineering of bone and bone cancers.

14.
EMBO Rep ; 22(7): e52891, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34184813

RESUMEN

Fusobacterium nucleatum (Fn) is a Gram-negative oral commensal, prevalent in various human diseases. It is unknown how this common commensal converts to a rampant pathogen. We report that Fn secretes an adhesin (FadA) with amyloid properties via a Fap2-like autotransporter to enhance its virulence. The extracellular FadA binds Congo Red, Thioflavin-T, and antibodies raised against human amyloid ß42. Fn produces amyloid-like FadA under stress and disease conditions, but not in healthy sites or tissues. It functions as a scaffold for biofilm formation, confers acid tolerance, and mediates Fn binding to host cells. Furthermore, amyloid-like FadA induces periodontal bone loss and promotes CRC progression in mice, with virulence attenuated by amyloid-binding compounds. The uncleaved signal peptide of FadA is required for the formation and stability of mature amyloid FadA fibrils. We propose a model in which hydrophobic signal peptides serve as "hooks" to crosslink neighboring FadA filaments to form a stable amyloid-like structure. Our study provides a potential mechanistic link between periodontal disease and CRC and suggests anti-amyloid therapies as possible interventions for Fn-mediated disease processes.


Asunto(s)
Adhesinas Bacterianas , Fusobacterium nucleatum , Adhesinas Bacterianas/metabolismo , Animales , Transporte Biológico , Ratones , Señales de Clasificación de Proteína , Virulencia
15.
J Bone Miner Res ; 36(9): 1796-1807, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33989436

RESUMEN

Trabecular plates and rods determine apparent elastic modulus and yield strength of trabecular bone, serving as important indicators of bone's mechanical integrity in health and disease. Although trabecular bone's apparent-level mechanical properties have been widely reported, tissue mechanical properties of individual trabeculae have not been fully characterized. We systematically measured tissue mineral density (TMD)-dependent elastic modulus of individual trabeculae using microindentation and characterized its anisotropy as a function of trabecular type (plate or rod), trabecular orientation in the global coordinate (longitudinal, oblique, or transverse along the anatomic loading axis), and indentation direction along the local trabecular coordinate (axial or lateral). Human trabecular bone samples were scanned by micro-computed tomography for TMD and microstructural measurements. Individual trabecula segmentation was used to decompose trabecular network into individual trabeculae, where trabecular type and orientation were determined. We performed precise, selective indentation of trabeculae in each category using a custom-built, microscope-coupled microindentation device. Co-localization of TMD at each indentation site was performed to obtain TMD-to-modulus correlations. We found significantly higher TMD and tissue modulus in trabecular plates than rods. Regardless of trabecular type and orientation, axial tissue modulus was consistently higher than lateral tissue modulus, with ratios ranging from 1.13 to 1.41. Correlations between TMD and tissue modulus measured from axial and lateral indentations were strong but distinct: axial correlation predicted higher tissue modulus than lateral correlation at the same TMD level. To assess the contribution of experimentally measured anisotropic tissue properties of individual trabeculae to apparent-level mechanics, we constructed non-linear micro-finite element models using a new set of trabecular bone samples and compared model predictions to mechanical testing measurements. Heterogeneous anisotropic models accurately predicted apparent elastic modulus but were no better than a simple homogeneous isotropic model. Variances in tissue-level properties may therefore contribute nominally to apparent-level mechanics in normal human trabecular bone. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos , Hueso Esponjoso , Anisotropía , Fenómenos Biomecánicos , Huesos/diagnóstico por imagen , Hueso Esponjoso/diagnóstico por imagen , Módulo de Elasticidad , Humanos , Microtomografía por Rayos X
16.
Bone ; 149: 115967, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33892178

RESUMEN

Sclerostin antibody romosozumab (EVENITY™, romosozumab-aqqg) has a dual mechanism of action on bone, increasing bone formation and decreasing bone resorption, leading to increases in bone mass and strength, and a decreased risk of fracture, and has been approved for osteoporosis treatment in patients with high risk of fragility fractures. The bone formation aspect of the response to sclerostin antibody treatment has thus far been best described as having two phases: an immediate and robust phase of anabolic bone formation, followed by a long-term response characterized by attenuated bone accrual. We herein test the hypothesis that following the immediate pharmacologic anabolic response, the changes in bone morphology result in altered (lesser) mechanical stimulation of the resident osteocytes, initiating a negative feedback signal quantifiable by a reduced osteocyte signaling response to load. This potential desensitization of the osteocytic network is probed via a novel ex vivo assessment of intracellular calcium (Ca2+) oscillations in osteocytes below the anteromedial surface of murine tibiae subjected to load after short-term (2 weeks) or long-term (8 weeks) treatment with sclerostin antibody or vehicle control. We found that for both equivalent load levels and equivalent strain levels, osteocyte Ca2+ dynamics are maintained between tibiae from the control mice and the mice that received long-term sclerostin antibody treatment. Furthermore, under matched strain environments, we found that short-term sclerostin antibody treatment results in a reduction of both the number of responsive cells and the speed of their responses, which we attribute largely to the probability that the observed cells in the short-term group are relatively immature osteocytes embedded during initial pharmacologic anabolism. Within this study, we demonstrate that osteocytes embedded following long-term sclerostin antibody treatment exhibit localized Ca2+ signaling akin to those of mature osteocytes from the vehicle group, and thus, systemic attenuation of responses such as circulating P1NP and bone formation rates likely occur as a result of processes downstream of osteocyte Ca2+ signaling.


Asunto(s)
Proteínas Morfogenéticas Óseas , Osteocitos , Proteínas Adaptadoras Transductoras de Señales , Animales , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Marcadores Genéticos , Humanos , Ratones , Osteocitos/metabolismo
17.
Nat Commun ; 12(1): 1706, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731712

RESUMEN

Our incomplete understanding of osteoarthritis (OA) pathogenesis has significantly hindered the development of disease-modifying therapy. The functional relationship between subchondral bone (SB) and articular cartilage (AC) is unclear. Here, we found that the changes of SB architecture altered the distribution of mechanical stress on AC. Importantly, the latter is well aligned with the pattern of transforming growth factor beta (TGFß) activity in AC, which is essential in the regulation of AC homeostasis. Specifically, TGFß activity is concentrated in the areas of AC with high mechanical stress. A high level of TGFß disrupts the cartilage homeostasis and impairs the metabolic activity of chondrocytes. Mechanical stress stimulates talin-centered cytoskeletal reorganization and the consequent increase of cell contractile forces and cell stiffness of chondrocytes, which triggers αV integrin-mediated TGFß activation. Knockout of αV integrin in chondrocytes reversed the alteration of TGFß activation and subsequent metabolic abnormalities in AC and attenuated cartilage degeneration in an OA mouse model. Thus, SB structure determines the patterns of mechanical stress and the configuration of TGFß activation in AC, which subsequently regulates chondrocyte metabolism and AC homeostasis.


Asunto(s)
Cartílago Articular/metabolismo , Cartílago Articular/patología , Estrés Mecánico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Huesos/patología , Línea Celular , Condrocitos/metabolismo , Citoesqueleto/metabolismo , Homeostasis , Humanos , Integrina alfaV/genética , Integrina alfaV/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoartritis/metabolismo , Osteoartritis/patología , Transducción de Señal , Talina/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R984-R993, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33759575

RESUMEN

Vitamin B12 deficiency has been shown to affect bone mass in rodents and negatively impact bone formation in humans. In this study using mouse models, we define the effect of B12 supplementation in the wild-type mother and B12 deficiency in a mouse genetic model (Gif-/- mice) during gestation on bone and muscle architecture and mechanical properties in the offspring. Analysis of bones from 4-wk-old offspring of the wild-type mother following vehicle or B12 supplementation during gestation (from embryonic day 0.5 to 20.5) showed an increase in bone mass caused by an isolated increase in bone formation in the B12-supplemented group compared with vehicle controls. Analysis of the effect of B12 deficiency in the mother in a mouse genetic model (Gif-/- mice) on the long bone architecture of the offspring showed a compromised cortical and trabecular bone mass, which was completely prevented by a single injection of B12 in the B12-deficient Gif-/- mothers. Biomechanical analysis of long bones of the offspring born from B12-supplemented wild-type mothers showed an increase in bone strength, and conversely, offspring born from B12-deficient Gif-/- mothers revealed a compromised bone strength, which could be rescued by a single injection of B12 in the B12-deficient Gif-/- mother. Muscle structure and function analysis however revealed no significant effect on muscle mass, structure, and grip strength of B12 deficiency or supplementation in Gif-/- mice compared with littermate controls. Together, these results demonstrate the beneficial effect of maternally derived B12 in the regulation of bone structure and function in the offspring.


Asunto(s)
Huesos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Vitamina B 12/metabolismo , Animales , Densidad Ósea/fisiología , Suplementos Dietéticos , Femenino , Ratones , Embarazo , Vitaminas/metabolismo , Destete
19.
Biomacromolecules ; 22(2): 671-680, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33486954

RESUMEN

Cartilage lesion is a common tissue defect and is challenging in clinical practice. Trauma-induced cellular senescence could decrease the chondrocyte capability of maintaining cartilage tissue regeneration. A previous investigation showed that, by controlling the cellular senescence, the cartilage regeneration can be significantly accelerated. Based on this finding, we design a novel hydrogel, Alg/MH-Sr, that combines metformin, an established drug for inhibiting senescence, and strontium, an effective anti-inflammatory material for cartilage tissue engineering. A RT-PCR test suggests the significant inhibitory effect of the hydrogel on senescent, apoptotic, oxidative, and inflammatory genes' expression. Histological examinations demonstrate that the Alg/MH-Sr hydrogel accelerated cartilage repairment, and chondrocyte senescence was significantly inhibited. Our study demonstrates that the Alg/MH-Sr hydrogel is effective for cartilage defect treatment and provides a new clue in accelerating tissue repairment by inhibiting the senescence of cells and tissues.


Asunto(s)
Hidrogeles , Metformina , Alginatos , Cartílago , Senescencia Celular , Condrocitos , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogeles/farmacología , Metformina/farmacología , Estroncio/farmacología , Ingeniería de Tejidos
20.
Neurotrauma Rep ; 2(1): 592-602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35018361

RESUMEN

The administration of high-dose methylprednisolone (MP) for 24-48 h after traumatic spinal cord injury (SCI) has been shown to improve functional recovery. The known adverse effects of MP on skeletal muscle and the immune system, though, have raised clinically relevant safety concerns. However, the effect of MP administration on SCI-induced bone loss has not been evaluated to date. This study examined the adverse effects of high-dose MP administration on skeletal bone after acute SCI in rodents. Male rats underwent spinal cord transection at T3-T4, which was followed by an intravenous injection of MP and subsequent infusion of MP for 24 h. At 2 days, animals were euthanized and hindlimb bone samples were collected. MP significantly reduced bone mineral density (-6.7%) and induced deterioration of bone microstructure (trabecular bone volume/tissue volume, -18.4%; trabecular number, -19.4%) in the distal femur of SCI rats. MP significantly increased expression in the hindlimb bones of osteoclastic genes receptor activator of nuclear factor-κB ligand (RANKL; +402%), triiodothyronine receptor auxiliary protein (+32%), calcitonin receptor (+41%), and reduced osteoprotegerin/RANKL ratio (-72%) compared to those of SCI-vehicle animals. Collectively, 1 day of high-dose MP at a dose comparable to the dosing regimen prescribed to patients who qualify to receive this treatment approach with acute SCI increased loss of bone mass and integrity below the level of lesion than that of animals that had SCI alone, and was associated with further elevation in the expression of genes involved in pathways associated with osteoclastic bone resorption than that observed in SCI animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA