Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.684
Filtrar
1.
Food Res Int ; 187: 114407, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763661

RESUMEN

Microalgae protein holds great potential for various applications in the food industry. However, the current knowledge regarding microalgae protein remains limited, with little information available on its functional properties. Furthermore, the relationship between its molecular structure and functional properties is not well defined, which limits its application in food processing. This study aims to addresses these gaps though an analysis of the emulsibility and foamability of various soluble protein isolates from two species of Spirulina (Arthospira platensis and Spirulina platensis), and the functional properties of Spirulina protein isolates in relation to its molecular structure and charge state. Results revealed that the degree of cross-linking and aggregation or folding and curling of protein tertiary structures was higher in the highly soluble Spirulina protein isolates (AP50% and SP50%) than in the low-solubility isolates (AP30% and SP30%). The foaming capacity (FC) of AP50% and SP50% was found to be lower than that of AP30% and SP30%. Spirulina protein isolates can stably adsorb at the air-water interface for at least 20 min and possessed good interfacial activity. A high pH value was found to promote cross-linking of protein particles at the oil-water interface, thereby reinforcing the internal network structure of emulsions and increasing viscosity. These findings provide preliminary insights for potential applications of Spirulina protein isolates in food production, especially towards quality improvement.


Asunto(s)
Proteínas Bacterianas , Emulsiones , Solubilidad , Spirulina , Spirulina/química , Emulsiones/química , Proteínas Bacterianas/química , Emulsionantes/química , Manipulación de Alimentos/métodos , Estructura Molecular , Adsorción
2.
iScience ; 27(4): 109297, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38715943

RESUMEN

The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.

3.
J Phys Chem Lett ; 15(18): 4992-4999, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38695534

RESUMEN

The intrinsic anisotropy of NbSe2 provides a favorable prerequisite of second harmonic generation (SHG) and rich possibilities for tailoring its nonlinear optical (NLO) properties. Here we report the highly efficient SHG of mechanically exfoliated NbSe2 flakes. The nonlinear optical response changes with excitation wavelengths, layer thicknesses, and polarizations of the excitation laser. The anisotropic SHG response further exhibits the intrinsic non-centrosymmetric crystal structure and could effectively assign the crystalline orientation of NbSe2 flakes. Interestingly, although NbSe2 flakes with tens of nanometers thickness experience attenuations in SHG performance, more efficient SHG anisotropy ratios were obtained, which are around 4 times higher than that of the 5-layer counterpart. The determined second-order nonlinearities of NbSe2 flakes (monolayer: ∼1.0 × 103 pm/V; 3-layer: ∼73 pm/V) are comparable to those of the commonly reported two-dimensional materials (e.g., MoS2, WSe2, graphene) with the same number of layers and much higher than those of commercial nonlinear optical crystals.

4.
J Am Coll Cardiol ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754705

RESUMEN

Iatrogenic aortic dissection is a rare but life-threatening complication of coronary artery bypass surgery. We report a case with incidentally detected iatrogenic aortic dissection related to aorta cross-clamping successfully managed with watchful follow-up. The decision-making was based on 3D hologram and fluid dynamic analysis guidance.

5.
Chem Sci ; 15(14): 5192-5200, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577355

RESUMEN

Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials.

6.
Circulation ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557060

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease without effective pharmacological approaches. The nuclear hormone receptor LXRα (liver X receptor α), encoded by the NR1H3 gene, serves as a critical transcriptional mediator linked to several vascular pathologies, but its role in AAA remains elusive. METHODS: Through integrated analyses of human and murine AAA gene expression microarray data sets, we identified NR1H3 as a candidate gene regulating AAA formation. To investigate the role of LXRα in AAA formation, we used global Nr1h3-knockout and vascular smooth muscle cell-specific Nr1h3-knockout mice in 2 AAA mouse models induced with angiotensin II (1000 ng·kg·min; 28 days) or calcium chloride (CaCl2; 0.5 mol/L; 42 days). RESULTS: Upregulated LXRα was observed in the aortas of patients with AAA and in angiotensin II- or CaCl2-treated mice. Global or vascular smooth muscle cell-specific Nr1h3 knockout inhibited AAA formation in 2 mouse models. Loss of LXRα function prevented extracellular matrix degeneration, inflammation, and vascular smooth muscle cell phenotypic switching. Uhrf1, an epigenetic master regulator, was identified as a direct target gene of LXRα by integrated analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing. Susceptibility to AAA development was consistently enhanced by UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) in both angiotensin II- and CaCl2-induced mouse models. We then determined the CpG methylation status and promoter accessibility of UHRF1-mediated genes using CUT&Tag (cleavage under targets and tagmentation), RRBS (reduced representation bisulfite sequencing), and ATAC-seq (assay for transposase-accessible chromatin with sequencing) in vascular smooth muscle cells, which revealed that the recruitment of UHRF1 to the promoter of miR-26b led to DNA hypermethylation accompanied by relatively closed chromatin states, and caused downregulation of miR-26b expression in AAA. Regarding clinical significance, we found that underexpression of miR-26b-3p correlated with high risk in patients with AAA. Maintaining miR-26b-3p expression prevented AAA progression and alleviated the overall pathological process. CONCLUSIONS: Our study reveals a pivotal role of the LXRα/UHRF1/miR-26b-3p axis in AAA and provides potential biomarkers and therapeutic targets for AAA.

7.
Am J Transl Res ; 16(3): 916-924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586111

RESUMEN

BACKGROUND: BRII-196 and BRII-198 are two recombinant human immunoglobulin (Ig) G1 monoclonal antibodies (mAbs) that non-competitively target distinct epitope regions within the receptor-binding domain (RBD) of the coronavirus spike glycoproteins. These antibodies are derived directly from human B cells of individuals who recovered from COVID-19. OBJECTIVE: To analyze the efficacy of BRII-196/BRII-198 in the treatment of coronavirus disease 2019 (COVID-19) vaccine breakthrough infections. METHODS: COVID-19 patients at high risk of progressing to severe and critical illness, with an initial SARS-CoV-2 immunoglobulin (Ig) G antibody level < 1.0 S/CO (detected within 24-48 hours post COVID-19 diagnosis), were treated with BRII-196/BRII-198 within three days of symptom onset. Treatment continued until the antibody level exceeded 1.0 S/CO. Patients whose absolute lymphocyte count (ALC) at first detection (within 24-48 h post-diagnosis) was < 0.8 × 109/L received thymalfasin therapy within three days of symptom onset, continuing until the ALC level surpassed 0.8 × 109/L. We determined the correlation of SARS-CoV-2 IgG antibody level and ALC with the condition of COVID-19 patients. Additionally, we analyzed the effects of BRII-196/BRII-198 on SARS-CoV-2 nucleic acid (NA) negative conversion, lymphocyte count recovery, and the change in SARS-CoV-2 IgG antibody level from the first positive NA test for SARS-CoV-2 to negative conversion in COVID-19 patients. RESULTS: A total of 61 cases of breakthrough infections were observed, classified as 10 mild cases, 31 ordinary cases, and 20 severe cases. Among these, 20%, 48.4% and 75% of the patients with mild, ordinary, and severe COVID-19, respectively, had initial SARS-CoV-2 IgG antibody level < 1.0 S/CO. Additionally, 0%, 35% and 70% had initial ALC < 0.8 × 109/L, respectively. Fifteen ordinary and 15 severe COVID-19 patients were treated with BRII-196/BRII-198. In severely infected patients, BRII-196/BRII-198 treatment showed statistically significant differences in NA negative conversion time and changes in SARS-CoV-2 IgG antibody levels (P < 0.05). However, in patients classified with ordinary severity, BRII-196/BRII-198 treatment did not lead to notable differences in NA negative conversion time or changes in SARS-CoV-2 IgG antibody level (P > 0.05). BRII-196/BRII-198 therapy was not associated with lymphocyte count recovery time in patients with either ordinary and/or severe COVID-19 (P > 0.05). CONCLUSIONS: The initial levels of SARS-CoV-2 IgG antibody and lymphocytes in fully vaccinated patients with breakthrough infections are inversely correlated with the severity of the disease. Early treatment with BRII-196/BRII-198 can shorten NA negative conversion time in severe COVID-19 patients and increase in vivo neutralizing antibody levels post-conversion, providing lasting protection. However, BRII-196/BRII-198 does not influence lymphocyte count recovery in patients with either ordinary and/or severe COVID-19.

8.
Heliyon ; 10(7): e28742, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590882

RESUMEN

Cognitive ability, as an early human capital, has always been an important research object in modern education and labor economics. Despite growing awareness of the importance of height in individual growth and development, there are few empirical studies on height and cognitive ability. Using the data from the China Education Panel Survey, this paper examined the impact of height on the cognitive ability of adolescents and explored the reasons behind the Chinese pursuit of height growth and the potential impact mechanism. In this paper, comprehensive analysis ability was taken as the representative of cognitive ability. The empirical results showed that height was positively correlated with cognitive ability. From the perspective of the influence mechanism, the hypothesis that height reflected self-esteem, health, non-cognitive ability, and other influences on cognitive ability was excluded. To correct the errors that endogenous problems may cause, we used the PSM method and "age at first menstruation " and "age at first wet dream" as instrumental variables to correct them. The results showed that height still affected cognitive ability, with taller people having higher cognitive ability.

9.
Huan Jing Ke Xue ; 45(5): 2828-2839, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629545

RESUMEN

It is of great practical significance for regional sustainable development and ecological construction to quantitatively analyze the impact of construction land expansion on terrestrial ecosystem carbon storage and to explore the optimization scheme of simulating construction land expansion to improve future ecosystem carbon storage. Based on the land use and cover change (LUCC) and other geospatial data of the Beijing-Tianjin-Hebei Urban Agglomeration from 2000 to 2020, this study utilized the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and the patch-generating land-use simulation (PLUS) model to assess and analyze the changes in ecosystem carbon stocks and spatial patterns regionally. In this study, we performed linear regression analysis to investigate the relationship between urban land expansion and changes in ecosystem carbon stocks for varying urban land proportion levels during two distinct time intervals, 2000-2010 and 2010-2020, which was conducted at a spatial resolution of 2 km. Three distinct urban land expansion scenarios were subjected to simulation to forecast the prospective land use pattern by 2030. Subsequently, we quantified the ramifications of these scenarios on ecosystem carbon stocks during the period from 2020 to 2030. The results were as follows:① In the Beijing-Tianjin-Hebei Urban Agglomeration, the ecosystem carbon stocks exhibited notable variations over the study period, with values of 2 088.02, 2 106.78, and 2 121.25 Tg recorded for the years 2000, 2010, and 2020, respectively, resulting in a cumulative carbon sequestration of 33.23 Tg C during the study duration. It is noteworthy that forest carbon storage emerged as the dominant contributor, with an increase from 1 010.17 Tg in 2000 to 1 136.53 Tg in 2020. Throughout the study period, the spatial distribution of carbon stocks displayed relative stability. Regions characterized by lower carbon content were concentrated in the vicinity of the Bohai Rim region and in proximity to cities such as Beijing, Tianjin, and Shijiazhuang, as well as rural settlements. In contrast, grid units with moderate and high carbon stocks were predominantly situated in the western Taihang Mountain and the northern Yanshan Mountain. Additionally, there was a tendency of increasing carbon stocks in the Taihang Mountain and Yanshan Mountain region, whereas those surrounding major urban centers such as Beijing, Tianjin, Shijiazhuang, and Tangshan experienced a notable decline in carbon stocks. Such reductions were most pronounced in regions undergoing urban land expansion during the study period. ② In grid units with an urban land proportion exceeding 10% at each level, a strong correlation was observed between urban land expansion and changes in carbon stocks during both the 2000-2010 and 2010-2020 periods. The changes in urban land proportion adequately explained the variations in carbon stocks. However, the explanatory power of urban land on carbon stocks decreased during the 2010-2020 period, indicating that other factors played a more substantial role in influencing carbon stocks during this time. The regression coefficients for both periods exhibited a fluctuating upward trend. In comparison to that during the 2000-2010 period, the impact of urban land expansion on carbon stocks was relatively smaller during 2010-2020, indicating a weakening influence. ③ In light of three distinct development scenarios, namely natural development (Scenario Ⅰ), a 15% reduction in the rate of urban land expansion (Scenario Ⅱ), and a 30% reduction in the rate of urban land expansion (Scenario Ⅲ), the projected ecosystem carbon stocks for the Beijing-Tianjin-Hebei Urban Agglomeration in the year 2030 were estimated to be 2 129.12, 2 133.55, and 2 139.10 Tg, respectively. These projections indicated an increase of 7.88, 12.30, and 17.85 Tg in comparison to the current carbon stocks. All scenarios demonstrated that the terrestrial ecosystem would play a role of carbon sink, particularly with the greatest carbon sink observed in the scenario with a 30% reduction in urban land expansion. The fit performance between urban land expansion and carbon stock changes during the 2020-2030 period was significantly better than that during the 2000-2010 and 2010-2020 periods, and the regression coefficients showed a fluctuating increase with an increase in urban land proportion. Across grid units with different urban land proportion levels, the regression coefficients exhibited the order of Scenario Ⅰ < Scenario Ⅱ < Scenario Ⅲ. In pursuit of the carbon peaking and carbon neutrality goals, the Beijing-Tianjin-Hebei Urban Agglomeration should prioritize scenarios with reduced rates of urban land expansion, especially in regions with higher urban land proportions.

10.
Org Lett ; 26(15): 3135-3139, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38563556

RESUMEN

Herein, we present the first racemic total synthesis of the structurally complex monoterpene indole alkaloids rhynchines A-E, starting from commercially available methyl nicotinate and 3-(2-bromoethyl)-1H-indole. The success of our synthesis is attributed to the utilization of a bioinspired synthetic strategy, which facilitated the rapid construction of the pentacyclic core skeleton of the target molecules through biomimetic skeletal rearrangement and late-stage C-H oxidative cyclization. Additionally, silica-gel-promoted tautomerization played a crucial role as a strategic element in the chemical synthesis of rhynchines A and B.

11.
Infect Dis Poverty ; 13(1): 28, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610035

RESUMEN

BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.


Asunto(s)
Salud Única , Animales , Asia , Creación de Capacidad , Políticas , Zoonosis/prevención & control
12.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38624086

RESUMEN

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , G-Cuádruplex , Mitocondrias , Humanos , G-Cuádruplex/efectos de los fármacos , Ligandos , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto , Células HCT116 , ADN Mitocondrial/metabolismo
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 678-686, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646755

RESUMEN

Exploring the effects of ant nests on soil CH4 emissions in the secondary tropical forests is of great scientific significance to understand the contribution of soil faunal activities to greenhouse gas emissions. With static chamber-gas chromatography method, we measured the dry-wet seasonal dynamics of CH4 emissions from ant nests and control soils in the secondary forest of Syzygium oblatum communities in Xishuangbanna. We also examined the linkages of ant-mediated changes in functional microbial diversity and soil physicochemical properties with CH4 emissions. The results showed that: 1) Ant nests significantly accelerated soil CH4 emissions, with average CH4 emissions in the ant nests being 2.6-fold of that in the control soils. 2) The CH4 emissions had significant dry-wet seasonal variations, which was a carbon sink in the dry seasons (from -0.29±0.03 to -0.53±0.02 µg·m-2·h-1) and a carbon source in the wet seasons (from 0.098±0.02 to 0.041±0.009 µg·m-2·h-1). The CH4 emissions were significantly higher in ant nests than in control soils. The CH4 emissions from the ant nests had smaller dry-wet seasonal variation (from -0.38±0.01 to 0.12±0.02 µg·m-2·h-1) than those in the control soils (from -0.65±0.04 to 0.058±0.006 µg·m-2·h-1). 3) Ant nests significantly increased the values (6.2%-37.8%) of soil methanogen diversity (i.e., Ace and Shannon indices), temperature and humidity, carbon pools (i.e., total, easily oxidizable, and microbial carbon), and nitrogen pools (i.e., total, hydrolyzed, ammonium, and microbial biomass nitrogen), but decreased the diversity (i.e., Ace and Chao1 indices) of methane-oxidizing bacteria by 21.9%-23.8%. 4) Results of the structural equation modeling showed that CH4 emissions were promoted by soil methanogen diversity, temperature and humidity, and C and N pools, but inhibited by soil methane-oxidizing bacterial diversity. The explained extents of soil temperature, humidity, carbon pool, nitrogen pool, methanogen diversity, and methane-oxidizing bacterial diversity for the CH4 emission changes were 6.9%, 21.6%, 18.4%, 15.2%, 14.0%, and 10.8%, respectively. Therefore, ant nests regulated soil CH4 emission dynamics through altering soil functional bacterial diversities, micro-habitat, and carbon and nitrogen pools in the secondary tropical forests.


Asunto(s)
Hormigas , Bosques , Metano , Suelo , Clima Tropical , Metano/análisis , Metano/metabolismo , Animales , Suelo/química , China , Microbiología del Suelo , Estaciones del Año
14.
Sci Total Environ ; 927: 172292, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588741

RESUMEN

Trace element pollution has emerged as an increasingly severe environmental challenge owing to human activities, particularly in urban ecosystems. In farmlands, invasive species commonly outcompete native species when subjected to trace element treatments, as demonstrated in experiments with individual invader-native pairs. However, it is uncertain if these findings apply to a wider range of species in urban soils with trace elements. Thus, we designed a greenhouse experiment to simulate the current copper and zinc levels in urban soils (102.29 mg kg-1 and 148.32 mg kg-1, respectively). The experiment involved four pairs of invasive alien species and their natural co-existing native species to investigate the effects of essential trace elements in urban soil on the growth and functional traits of invasive and native species, as well as their interspecific relationship. The results showed that adding trace elements weakened the competitiveness of invasive species. Nonetheless, trace element additions did not change the outcome of competition, consistently favoring invasion successfully. Under trace element addition treatments, invasive species and native species still maintained functional differentiation trend. Furthermore, the crown area, average leaf area and leaf area per plant of invasive species were higher than those of native species by 157 %, 177 % and 178 % under copper treatment, and 194 %, 169 % and 188 % under zinc treatment, respectively. Additionally, interspecific competition enhanced the root growth of invasive species by 21 % with copper treatment and 14 % with zinc treatment. The ability of invasive species to obtain light energy and absorb water and nutrients might be the key to their successful invasion.


Asunto(s)
Especies Introducidas , Contaminantes del Suelo , Oligoelementos , Oligoelementos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Ecosistema , Plantas/efectos de los fármacos , Cobre , Zinc
15.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643940

RESUMEN

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Asunto(s)
Proliferación Celular , Células Madre Mesenquimatosas , Ovario , Femenino , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Fertilidad/efectos de los fármacos , Receptores de Neuropéptido/metabolismo , Humanos , Regulación Alostérica/efectos de los fármacos , Receptores de Ghrelina/metabolismo , Cricetinae , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Dimerización
16.
Food Sci Nutr ; 12(4): 2833-2845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628208

RESUMEN

Hyperlipidemia is a multifaceted metabolic disease, which is the major risk factor for atherosclerosis and cardiovascular diseases. Traditional Chinese medicine provides valuable therapeutic strategies in the treatment of hyperlipidemia. Inonotus obliquus has been used in traditional medicine to treat numerous diseases for a long time. To screen and isolate the fractions of I. obliquus polysaccharides (IOP) that can reduce blood lipid in the hyperlipemia animals and cell models, and investigate its mechanisms. The active component IOP-A2 was isolated, purified, and identified. In vivo, rats were randomly divided into blank control group (NG), the high-fat treatment group (MG), lovastatin group (PG), and IOP-A group. Compared with MG, the hyperlipidemic rats treated with IOP-A2 had decreased body weight and organ indexes, with the level of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) significantly decreased (p < .05), and level of serum high-density lipoprotein cholesterol (HDL-C) significantly increased (p < .05). Hepatocyte steatosis in hepatic lobules was significantly reduced. In vitro, the accumulation of lipid droplets in the model of fatty degeneration of HepG2 cells was significantly alleviated, and cellular TC and TG content was significantly decreased (p < .01). Moreover, the expression of recombinant cytochrome P450 7A1 (CYP7A1) and Liver X Receptor α (LXRα) were up-regulated (p < .05) both in vivo and in vitro. The results showed that IOP-A2 may exert its hypolipidemic activity by promoting cholesterol metabolism and regulating the expression of the cholesterol metabolism-related proteins CYP7A1, LXRα, SR-B1, and ABCA1.

17.
Heart Rhythm ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588992

RESUMEN

BACKGROUND: The aorta-mitral annulus conjunction (AMC) is an uncommon site of origin of focal atrial tachycardias (ATs). Hence, the electrophysiological and ablation target characteristics are poorly described. OBJECTIVE: The purpose of this study was to describe the characteristics of AMC AT in detail. METHODS: The study enrolled 650 patients with AT, 21 (3.2%) of whom had AT originating from the AMC. A comprehensive evaluation, including electrocardiography, electrophysiology study, computed tomography scan, and intracardiac echocardiography, was performed. RESULTS: The majority (90.5%) of ATs occurred spontaneously. The mean age of this group was 48.9 ± 21.6 years, with 12 being female (57.1%). Seventeen patients had a typical biphasic P wave with a prominent positive component. The earliest activation site in the right atrium was near the His bundle, with average activation -10.3 ± 6.0 ms preceding the P wave. The successful ablation targets were distributed as follows: 1 case at 9 o'clock, 6 cases at 10 o'clock, 7 cases at 11 o'clock, 6 cases at 12 o'clock, and 1 case in the left coronary cusp. The local AMC potential differed from the commonly perceived annular potential and was characterized by a large A and a small V (atrial-to-ventricular ratio > 1). The angle of encroachment on the left atrial anterior wall, compressed by the left coronary cusp, was significantly smaller in the AMC AT group than in the control group, which may have contributed to the arrhythmia substrate (141.7° ± 11.5° vs 155.2° ± 13.9°; P = .026). CONCLUSION: A new strategy for mapping AMC ATs has been introduced. The ablation target should have an atrial-to-ventricular ratio of >1.

18.
Curr Issues Mol Biol ; 46(4): 3694-3712, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38666960

RESUMEN

Establishing a multi-enzyme synergistic lignocellulosic biodegradation system using lytic polysaccharide monooxygenase (LPMO) and polyphenol oxidases is vital for efficiently utilizing plant biomass waste, ultimately benefiting the carbon cycle and promoting environmental protection. Single-residue mutations of LPMO can improve the efficiency of lignocellulosic biomass degradation. However, the activity of mutant-type LPMO in relation to lignin-diverted reducing agents has not been sufficiently explored. In this study, laccase and tyrosinase were initially investigated and their optimal conditions and impressive thermal stability were revealed, indicating their potential synergistic abilities with LPMO in lignocellulose biodegradation. When utilizing gallic acid as a reducing agent, the activities of LPMOs were increased by over 10%, which was particularly evident in mutant-type LPMOs after the addition of polyphenol oxidases. In particular, the combination of tyrosinase with either 4-hydroxy-3-methoxyphenylacetone or p-coumaric acid was shown to enhance the efficacy of LPMOs. Furthermore, the highest activity levels of wild-type LPMOs were observed with the addition of laccase and 3-methylcatechol. The similarities between wild and mutant LPMOs regarding their activities in lignin-diverted phenolic compounds and reducing agents are almost identical, suggesting that the single-residue mutation of LPMO does not have a detrimental effect on its performance. Above all, this study indicates that understanding the performance of both wild and mutant types of LPMOs in the presence of polyphenol oxidases and various reducing agents constitutes a key link in the industrialization of the multi-enzyme degradation of lignocellulose.

19.
Chin J Integr Med ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676827

RESUMEN

OBJECTIVE: To investigate the therapeutic efficacy of cinnamaldehyde (CA) on systemic Candida albicans infection in mice and to provide supportive data for the development of novel antifungal drugs. METHODS: Ninety BALB/c mice were randomly divided into 3 groups according to a random number table: CA treatment group, fluconazole (positive control) group, and Tween saline (negative control) group, with 30 mice in each group. Initially, all groups of mice received consecutive intraperitoneal injections of cyclophosphamide at 200 mg/kg for 2 days, followed by intraperitoneal injection of 0.25 mL C. albicans fungal suspension (concentration of 1.0 × 107 CFU/mL) on the 4th day, to establish an immunosuppressed systemic Candida albicans infection animal model. Subsequently, the mice were orally administered CA, fluconazole and Tween saline, at 240, 240 mg/kg and 0.25 mL/kg respectively for 14 days. After a 48-h discontinuation of treatment, the liver, small intestine, and kidney tissues of mice were collected for fungal direct microscopic examination, culture, and histopathological examination. Additionally, renal tissues from each group of mice were collected for (1,3)- ß -D-glucan detection. The survival status of mice in all groups was monitored for 14 days of drug administration. RESULTS: The CA group exhibited a fungal clearance rate of C. albicans above 86.7% (26/30), significantly higher than the fluconazole group (60.0%, 18/30, P<0.01) and the Tween saline group (30.0%, 9/30, P<0.01). Furthermore, histopathological examination in the CA group revealed the disappearance of inflammatory cells and near-normal restoration of tissue structure. The (1,3)-ß-D-glucan detection value in the CA group (860.55 ± 126.73 pg/mL) was significantly lower than that in the fluconazole group (1985.13 ± 203.56 pg/mL, P<0.01) and the Tween saline group (5910.20 ± 320.56 pg/mL, P<0.01). The mouse survival rate reached 90.0% (27/30), higher than the fluconazole group (60.0%, 18/30) and the Tween saline group (30.0%, 9/30), with a significant difference between the two groups (both P<0.01). CONCLUSIONS: CA treatment exhibited significant therapeutic efficacy in mice with systemic C. albicans infection. Therefore, CA holds potential as a novel antifungal agent for targeted treatment of C. albicans infection.

20.
Free Radic Biol Med ; 220: 125-138, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657754

RESUMEN

Fusobacterium (F.) nucleatum is a carcinogenesis microbiota in colorectal cancer (CRC). Growing evidence shows that F. nucleatum contributes to chemoresistance. Ferroptosis is reported to restore the susceptibility of resistant cells to chemotherapy. However, the role of gut microbiota affecting ferroptosis in chemoresistance remains unclear. Here, we examined the CRC tissues of patients using 16S rRNA sequencing to investigate the possible connection between gut microbiota dysbiosis and the relapse of CRC. We found that a high abundance of F. nucleatum in CRC tissue is associated with relapse. We further demonstrated that F. nucleatum induced oxaliplatin resistance in vitro and in vivo. The transcriptome of an F. nucleatum-infected cell revealed ferroptosis was associated with F. nucleatum infection. We perform malondialdehyde, ferrous iron, and glutathione assays to verify the effect of F. nucleatum on ferroptosis under oxaliplatin treatment in vivo and in vitro. Mechanistically, F. nucleatum promoted oxaliplatin resistance by overexpressing GPX4 and then inhibiting ferroptosis. E-cadherin/ß-catenin/TCF4 pathway conducted the GPX4 overexpression effect of F. nucleatum. The chromatin immuno-precipitation quantitative PCR (CHIP-qPCR) and dual-luciferase reporter assay showed that F. nucleatum promoted TCF4 binding with GPX4. We also determined the E-cadherin/ß-catenin/TCF4/GPX4 axis related to tumor tissue F. nucleatum status and CRC relapse clinically. Here, we revealed the contribution of F. nucleatum to oxaliplatin resistance by inhibiting ferroptosis in CRC. Targeting F. nucleatum and ferroptosis will provide valuable insight into chemoresistance management and may improve outcomes for patients with CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA