Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 175: 105944, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38580033

RESUMEN

Chelidonium majus L. contained alkaloids as its main component, exhibiting various biological activities, particularly antibacterial activity. This study aimed to extract alkaloids from C. majus L. (total alkaloids) and evaluate their antibacterial activity both in vitro and in vivo. Reflux extraction was carried out on C. majus L., and the extract was purified with HPD-600 macroporous resin and 732 cation exchange resin columns. Infection modeling of Caenorhabditis elegans (C. elegans) was established to investigate the impact of Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive Staphylococcus aureus (MSSA) on the motility, longevity, and reactive oxygen species (ROS) levels of wild-type worms (N2 strain). The effects of total alkaloids on longevity and ROS were further evaluated in infected N2 worms. Additionally, the effect of total alkaloids on the stress resistance of C. elegans and the mechanism of action were investigated. By utilizing CB1370, DR26 and CF1038 transgenic strains of C. elegans to identify whether the antibacterial activity of total alkaloids was dependent on DAF-2/DAF-16 pathway. The results showed that total alkaloids exhibited a significant antibacterial activity against both MRSA and MSSA (MIC 31.25 µg/mL). Compared with MSSA, the MRSA exhibited a stronger inhibitory effect on the movement behavior and development of worms, along with faster pathogenicity and unique virulence factors. Total alkaloids also displayed the ability to extend the lifespan of C. elegans under oxidative stress and heat stress, and reduce the expression of ROS. The antibacterial activity of total alkaloids was primarily dependent on the DAF-2/DAF-16 pathway, and the presence of functional DAF-2 was deemed essential in total alkaloids mediated immune response against MRSA. Moreover, the antibacterial and anti-infection effects of total alkaloids were found to be associated with the daf-16 gene fragment.

2.
Int Immunopharmacol ; 131: 111875, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508095

RESUMEN

As an endocrine cytokine, fibroblast growth factor 21 (FGF21) exhibits anti-inflammatory properties. With the development of lupus nephritis (LN), which is tightly related to pathogenic factors, including inflammation and immune cell dysregulation, we explored the impact of Fibroblast Growth Factor 21 (FGF21) as well as its underlying mechanism. We induced an in vivo LN model using pristane in both wild-type C57BL/6 and FGF21 knockout (FGF21-/-) mice. LN serum obtained from 32-week-old wild-type LN mice was used to stimulate RAW264.7 and human renal tubular epithelial (HK-2) cells to mimic an in vitro LN model. Moreover, our findings revealed that FGF21-/- mice showed more severe kidney injury compared to wild-type mice, as evidenced by increased levels of renal function markers, inflammatory factors, and fibrosis markers. Notably, exogenous administration of FGF21 to wild-type LN mice markedly mitigated these adverse effects. Additionally, we used tandem mass tag (TMT)-based quantitative proteomics to detect differentially expressed proteins following FGF21 treatment. Results indicated that 121 differentially expressed proteins influenced by FGF21 were involved in biological processes such as immune response and complement activation. Significantly upregulated protein Irgm 1, coupled with modulated inflammatory response, appeared to contribute to the beneficial effects of FGF21. Furthermore, Western blot analysis demonstrated that FGF21 upregulated Irgm 1 while inhibiting nucleotide-binding oligomerization domain-like receptors family pyrin domain including 3 (NLRP3) inflammasome expression. Silencing Irgm 1, in turn, reversed FGF21's inhibitory effect on NLRP3 inflammasome. In summary, FGF21 can potentially alleviate pristane-induced lupus nephritis in mice, possibly through the FGF21/Irgm 1/NLRP3 inflammasome pathway.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Inflamasomas , Nefritis Lúpica , Terpenos , Animales , Humanos , Ratones , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Animals (Basel) ; 14(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473105

RESUMEN

The aim of this study was to verify whether small molecules can improve the efficiency of precision gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoprotein (RNP) in porcine cells. CRISPR associated 9 (Cas9) protein, small guide RNA (sgRNA), phosphorothioate-modified single-stranded oligonucleotides (ssODN), and different small molecules were used to generate precise nucleotide substitutions at the insulin (INS) gene by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by polymerase chain reaction (PCR) for the target site. All samples were sequenced and analyzed, and the efficiencies of different small molecules at the target site were compared. The results showed that the optimal concentrations of the small molecules, including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A, for in vitro-cultured PFFs' viability were determined. Compared with the control group, the single small molecules including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A increased the efficiency of HDR-mediated precise gene editing from 1.71-fold to 2.28-fold, respectively. There are no benefits in using the combination of two small molecules, since none of the combinations improved the precise gene editing efficiency compared to single small molecules. In conclusion, these results suggested that a single small molecule can increase the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells.

4.
Animals (Basel) ; 14(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38396618

RESUMEN

The multi-gene editing porcine cell model can analyze the genetic mechanisms of multiple genes, which is beneficial for accelerating genetic breeding. However, there has been a lack of an effective strategy to simultaneously perform precise multi-gene editing in porcine cells. In this study, we aimed to improve the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells. CRISPR RNP, including Cas9 protein, sgRNA, and ssODN, was used to generate precise nucleotide substitutions by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by PCR for each target site. To enhance HDR efficacy, small-molecule M3814 and phosphorothioate-modified ssODN were employed. All target DNA samples were sequenced and analyzed, and the efficiencies of different combinations of the CRISPR RNP system in target sites were compared. The results showed that when 2 µM M3814, a small molecule which inhibits NHEJ-mediated repair by blocking DNA-PKs activity, was used, there was no toxicity to PFFs. The CRISPR RNP-mediated HDR efficiency increased 3.62-fold. The combination of CRISPR RNP with 2 µM M3814 and PS-ssODNs achieved an HDR-mediated precision gene modification efficiency of approximately 42.81% in mutated cells, a 6.38-fold increase compared to the control group. Then, we used the optimized CRISPR RNP system to perform simultaneous editing of two and three loci at the INS and RLN3 genes. The results showed that the CRISPR RNP system could simultaneously edit two and three loci. The efficiency of simultaneous editing of two loci was not significantly different from that of single-gene editing compared to the efficiency of single-locus editing. The efficiency of simultaneous precise editing of INS, RLN3 exon 1, and RLN3 exon 2 was 0.29%, 0.24%, and 1.05%, respectively. This study demonstrated that a 2 µM M3814 combination with PS-ssODNs improves the efficacy of CRISPR RNP-mediated precise gene editing and allows for precise editing of up to three genes simultaneously in porcine cells.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167018, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185350

RESUMEN

Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Ratas , Animales , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3299-3313, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37256335

RESUMEN

Pulmonary fibrosis is a progressive and fatal fibrotic lung disease and associated with a high mortality rate. In the study, the prevention and treatment effects of fibroblast growth factor-21 (FGF-21) in bleomycin (BLM)-induced pulmonary fibrosis were investigated in vivo and vitro. In the prevention of pulmonary fibrosis studies, the results showed that interdict of FGF-21 could reduce the related gene and protein expression levels of pulmonary fibrosis. In addition, FGF-21 significantly reduced both the aggregation of inflammatory cells and deposition of collagen in the lung by histopathology. In therapy of pulmonary fibrosis studies, the results indicated that treatment with FGF-21 resulted in an amelioration of the pulmonary fibrosis in mice with reductions of the pathological score, collagen deposition and transforming growth factor (TGF)-ß and α-smooth muscle actin (α-SMA) expressions in the lung tissues at fibrotic stage, and late administration was also able to reduce the degree of pulmonary fibrosis and even better than these in the prevention group. Furthermore, BLM-induced THP-1 macrophage model was verified using FGF-21; the result showed that FGF-21 decreased the related gene expression level of pulmonary fibrosis. FGF-21 may have preventive and therapeutic effects on BLM-induced pulmonary fibrosis via inhibiting myofibroblast differentiation and inflammatory. Thus, FGF-21 represents a potential drug for the prevention and treatment of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Bleomicina/efectos adversos , Fibroblastos , Pulmón , Factores de Crecimiento de Fibroblastos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis , Colágeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Endogámicos C57BL
7.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239880

RESUMEN

Simultaneously, multiplexed genome engineering and targeting multiple genomic loci are valuable to elucidating gene interactions and characterizing genetic networks that affect phenotypes. Here, we developed a general CRISPR-based platform to perform four functions and target multiple genome loci encoded in a single transcript. To establish multiple functions for multiple loci targets, we fused four RNA hairpins, MS2, PP7, com and boxB, to stem-loops of gRNA (guide RNA) scaffolds, separately. The RNA-hairpin-binding domains MCP, PCP, Com and λN22 were fused with different functional effectors. These paired combinations of cognate-RNA hairpins and RNA-binding proteins generated the simultaneous, independent regulation of multiple target genes. To ensure that all proteins and RNAs are expressed in one transcript, multiple gRNAs were constructed in a tandemly arrayed tRNA (transfer RNA)-gRNA architecture, and the triplex sequence was cloned between the protein-coding sequences and the tRNA-gRNA array. By leveraging this system, we illustrate the transcriptional activation, transcriptional repression, DNA methylation and DNA demethylation of endogenous targets using up to 16 individual CRISPR gRNAs delivered on a single transcript. This system provides a powerful platform to investigate synthetic biology questions and engineer complex-phenotype medical applications.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Sistemas CRISPR-Cas/genética , Expresión Génica , Activación Transcripcional , ARN de Transferencia/genética , Edición Génica
8.
Int Immunopharmacol ; 120: 110363, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245299

RESUMEN

Avian influenza (AI) and Newcastle disease (ND) are regarded as the leading viral infectious diseases affecting the global poultry industry. Vaccination is a successful therapeutic intervention to safeguard birds against both ND and AI infections. In this research, ND-AI bivalent vaccines were developed through the incorporation of HA and IRES-GMCSF gene fragments at varying locations of NDV rClone30 vectors. The two constructed vaccines were rClone30-HA-IRES-GMCSF(PM) and rClone30-HA(PM)-IRES-GMCSF(NP). Next, 27-day-old Luhua chickens (the maternal antibody level was reduced to 1.4 log2) were inoculated with the same dose of the vaccines, and humoral and cellular immune responses were assessed at multiple time points. Compared to the commercial vaccine, the levels of anti-NDV antibodies following the administration of the ND-AI vaccines were above the theoretical protection value of 4 log2. The levels of anti-AIV antibodies in the bivalent vaccine group were notably higher than those in the commercial vaccine group. Furthermore, the content of inflammatory factors and transcription levels were significantly increased in chickens administered ND-AI vaccines. The ND-AI vaccines induced stronger proliferative responses of B cells or CD3+, CD8+, and CD4 + T cells. Hematoxylin and eosin staining showed that the tissue damage induced by the two recombinant vaccines was similar to that of commercial vaccines. The outcomes of the study suggest that the two bivalent ND-AI vaccine candidates produced using the reverse genetics approach are both secure and effective. This approach not only enables the multiuse of one vaccine but also provides a new concept for the development of other vaccines against infectious viral diseases.


Asunto(s)
Vacunas contra la Influenza , Gripe Aviar , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Enfermedad de Newcastle/prevención & control , Pollos , Virus de la Enfermedad de Newcastle/genética , Vacunas Combinadas , Gripe Aviar/prevención & control , Vacunas Sintéticas , Anticuerpos Antivirales
9.
Anim Biotechnol ; 34(9): 4703-4712, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36946758

RESUMEN

Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Porcinos/genética , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , ARN de Transferencia/genética , Fibroblastos
10.
China CDC Wkly ; 5(52): 1167-1173, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164467

RESUMEN

What is already known about this topic?: Campylobacter is a significant foodborne pathogen that leads to global outbreaks of acute gastroenteritis (AGE) usually affecting less than 30 individuals. Human sapovirus (HuSaV) is an enteric virus responsible for sporadic cases and outbreaks of AGE worldwide. In a study conducted in Beijing, HuSaV detection ranked second after norovirus. What is added by this report?: We present a discussion of the first large-scale outbreak of AGE caused by both Campylobacter coli (C. coli) and HuSaV. The outbreak involved a total of 996 patients and exhibited two distinct peaks over a period of 17 days. Through case-control studies, we identified exposure to raw water from a secondary water supply system as a significant risk factor. Among 83 patients, 49 samples tested positive for C. coli, 39 samples tested positive for HuSaV, and 27 samples tested positive for both pathogens using real-time polymerase chain reaction detection. Furthermore, whole-genome sequencing of 17 C. coli isolates obtained from 17 patients revealed that all isolates belonged to a highly clonal strain of C. coli. What are the implications for public health practice?: Outbreaks of AGE resulting from multiple pathogen infections warrant increased attention. This report emphasizes the significance of ensuring the safety of drinking water, particularly in secondary supply systems.

11.
Sci Rep ; 12(1): 400, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013379

RESUMEN

Fibroblast growth factor-21 (FGF-21) performs a wide range of biological functions in organisms. Here, we report for the first time that FGF-21 suppresses thrombus formation with no notable risk of bleeding. Prophylactic and therapeutic administration of FGF-21 significantly improved the degree of vascular stenosis and reduced the thrombus area, volume and burden. We determined the antithrombotic mechanism of FGF-21, demonstrating that FGF-21 exhibits an anticoagulant effect by inhibiting the expression and activity of factor VII (FVII). FGF-21 exerts an antiplatelet effect by inhibiting platelet activation. FGF-21 enhances fibrinolysis by promoting tissue plasminogen activator (tPA) expression and activation, while inhibiting plasminogen activator inhibitor 1 (PAI-1) expression and activation. We further found that FGF-21 mediated the expression and activation of tPA and PAI-1 by regulating the ERK1/2 and TGF-ß/Smad2 pathways, respectively. In addition, we found that FGF-21 inhibits the expression of inflammatory factors in thrombosis by regulating the NF-κB pathway.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Fibrinolíticos/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Trombosis/prevención & control , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor VII/genética , Factor VII/metabolismo , Fibrinólisis/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Masculino , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activación Plaquetaria/efectos de los fármacos , Conejos , Transducción de Señal , Proteína Smad2/metabolismo , Trombosis/sangre , Trombosis/genética , Activador de Tejido Plasminógeno/genética , Activador de Tejido Plasminógeno/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6496-6499, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892598

RESUMEN

Simplified models of neurons are widely used in computational investigations of large networks. One of the most important performance metrics of simplified models is their accuracy in reproducing action potential (spike) timing. In this article, we developed a simple, computationally efficient neuron model by modifying the adaptive exponential integrate and fire (AdEx) model [1] with sigmoid afterhyperpolarization current (Sigmoid AHP). Our model can precisely match the spike times and spike frequency adaptation of cortical pyramidal neurons. The accuracy was similar to a more complex two compartment biophysically realistic model of the same neurons. This work provides a simplified neuronal model with improved spike timing accuracy for use in modeling of large neural networks.Clinical Relevance- Accurate and computationally efficient single neuron model will enable large network modeling of brain regions involved in neurological and psychiatric disorders and may lead to a better understanding of the disorder mechanisms.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción , Adaptación Fisiológica , Simulación por Computador , Humanos
13.
Bioorg Chem ; 116: 105389, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601295

RESUMEN

Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10ß-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8ß-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8ß-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.


Asunto(s)
Antioxidantes/farmacología , Flores/química , Inula/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/tratamiento farmacológico , Estructura Molecular , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Relación Estructura-Actividad
14.
Front Comput Neurosci ; 15: 612937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163343

RESUMEN

Recent research suggests that in vitro neural networks created from dissociated neurons may be used for computing and performing machine learning tasks. To develop a better artificial intelligent system, a hybrid bio-silicon computer is worth exploring, but its performance is still inferior to that of a silicon-based computer. One reason may be that a living neural network has many intrinsic properties, such as random network connectivity, high network sparsity, and large neural and synaptic variability. These properties may lead to new design considerations, and existing algorithms need to be adjusted for living neural network implementation. This work investigates the impact of neural variations and random connections on inference with learning algorithms. A two-layer hybrid bio-silicon platform is constructed and a five-step design method is proposed for the fast development of living neural network algorithms. Neural variations and dynamics are verified by fitting model parameters with biological experimental results. Random connections are generated under different connection probabilities to vary network sparsity. A multi-layer perceptron algorithm is tested with biological constraints on the MNIST dataset. The results show that a reasonable inference accuracy can be achieved despite the presence of neural variations and random network connections. A new adaptive pre-processing technique is proposed to ensure good learning accuracy with different living neural network sparsity.

15.
J Ethnopharmacol ; 276: 114178, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33945857

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the "Shi Shi Mi Lu", which was edited by medical scientist Chen Shi'duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases. AIM OF THE STUDY: To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE-/-) mice. MATERIALS AND METHODS: Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE-/- mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE-/- mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by the esterase method. Morphological changes of the aortic sinus in mice were observed by hematoxylin-eosin (HE) staining, the lipid infiltration of the aorta and aortic sinus were observed by oil red O staining, and the spleen index was calculated. The proportion of Ly6Chigh and Ly6Clow monocyte subsets, macrophages, and their M1 phenotype, as well as Treg cells in spleen were measured by flow cytometry. The expressions of cluster of differentiation 36 (CD36), scavenger receptor A1 (SRA1), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), F4/80, and fork head frame protein 3 (FOXP3) in aortic sinus were assessed by immunohistochemical staining. The serum levels of oxidized low density lipoprotein (ox-LDL), interleukin-1ß (IL-1ß), IL-18, transforming growth factor-ß (TGF-ß), and IL-10 were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS: Compared with the model group, the level of serum TC and LDL-C decreased in the SMYAD group, the pathological changes of aortic sinus decreased, and lipid infiltration of aorta and aortic sinus also decreased. These decreases were accompanied by a significant downregulation of CD36, SRA1, and LOX-1. Furthermore, the proportions of Ly6Chigh pro-inflammatory monocyte subsets, macrophages, and their M1 phenotypes in spleen decreased significantly, while the proportion of Treg cells increased. In addition, while the expression of F4/80 decreased, the expression of FOXP3 increased in the aorta sinus. The levels of serum pro-inflammatory factors IL-1ß and IL-18 decreased. CONCLUSIONS: SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.


Asunto(s)
Apolipoproteínas E/genética , Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Animales , Aorta/metabolismo , Aorta/patología , Antígenos CD36/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Citocinas/sangre , Medicamentos Herbarios Chinos/uso terapéutico , Factores de Transcripción Forkhead/metabolismo , Lipoproteínas LDL/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Depuradores de Clase E/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Triglicéridos/sangre
16.
Transbound Emerg Dis ; 68(6): 3658-3675, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33406318

RESUMEN

Infectious bursal disease (IBD) is one of the most economically important infectious diseases. Currently, vaccination is the most effective method to prevent IBD. Medium-virulence vaccines can damage the bursa of Fabricius and result in immunosuppression. Therefore, it is essential to develop a safe and effective vaccine against infectious bursal disease virus (IBDV). In this study, the five neutralizing epitopes of the IBDV VP2 protein were confirmed by neutralizing single chain variable fragment antibodies. Then, the neutralizing epitopes antigen (NEA) protein was constructed with five neutralizing epitopes and expressed by pET-27b. Furthermore, the immune effect and protective immunity of the NEA protein with the following adjuvants were evaluated in specific-pathogen-free chickens: oil emulsion adjuvant (OEA), double emulsion adjuvant (DEA), granulocyte-macrophage colony-stimulating factor (GM-CSF) adjuvant and complete Freund's adjuvant (CFA). The experimental results demonstrated that chickens immunized with NEA vaccines elicited stronger humoral and/or cellular immune responses and inflammatory responses than those in the NEA protein group. Chickens were protected in OEA, CFA and GM-CSF adjuvant groups, which were challenged with virulent IBDV BC6/85. Furthermore, IBDV RNA was not measured, and there appeared to be little apoptosis in the bursa of Fabricius based on TUNEL histology and the expression of Bax and Bcl-2 in the OEA, CFA and GM-CSF adjuvant groups. Based on the experimental results, the advantages and disadvantages of adjuvants and industrial production methods, GM-CSF was found to be the optimal adjuvant. Therefore, NEA with GM-CSF adjuvant is a promising vaccine candidate against IBDV, and it provides a framework for developing other vaccines against infectious viral diseases.


Asunto(s)
Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Anticuerpos Antivirales , Bolsa de Fabricio , Pollos , Epítopos , Enfermedades de las Aves de Corral/prevención & control
17.
Zhongguo Zhong Yao Za Zhi ; 45(14): 3307-3315, 2020 Jul.
Artículo en Chino | MEDLINE | ID: mdl-32726044

RESUMEN

In this study, the clinical characteristics and drug combination rules of Danshen Chuanxiongqin Injection in the treatment of patients with cerebral infarction were analyzed. The inpatient information of 2 857 patients of cerebral infarction treated with Danshen Chuanxiongqin Injection in HIS database of 20 grade Ⅲ class A hospitals in China was collected, and a model was established by description analysis and Apriori algorithm, in order to explore the clinical characteristics and drug combination rules of Danshen Chuan-xiongqin Injection in the treatment of cerebral infarction. The results showed that among patients of cerebral infarction treated with Danshen Chuanxiongqin Injection, 1 727 patients were older than 65 years old, accounting for 69.61%, and 1 610 were males, accounting for 63.59%. Commonly used drugs included lipid-lowering agents, anticoagulant thrombolytic agents, antiplatelet agents, stimulants of brain metabolism, vasodilators and other Western drugs, as well as traditional Chinese medicines, such as blood-activating agents, heat-clearing agents and expectorant agents. The Western medicine with the highest use frequency in combination with Danshen Chuan-xiongqin Injection was aspirin enteric-coated tablets(1 528 cases, 53.48%). The traditional Chinese medicine with the highest use frequency in combination with Danshen Chuanxiongqin Injection was Xingnaojing Injection, with a total of 378 cases, accounting for 13.23%. Among them, the most commonly used Western drugs combined with Danshen Chuanxiongqin Injection were anticoagulant thrombolytic and antiplatelet drugs, with a usage rate as high as 83.48%. In order to further explore the drug combination rules of Danshen Chuanxiongqin Injection, the association analysis of drug combination in patients of cerebral infarction treated with Danshen Chuanxiongqin Injection was carried out. In clinical combination of two Western drugs, Atorvastatin Calcium Capsules+Cerebral Proteolytic Injection were the most common combination, with a support of 27.10%. In clinical combination with 3 Western drugs, Clopidogrel Bisulfate Tablets+Atorvastatin Calcium Capsules+Cerebral Proteolytic Injection were most commonly used, with a support of 15.90%. The results showed that the patients of cerebral infarction treated with Danshen Chuanxiongqin Injection were mainly elderly males, and often complicated with hypertension, coronary heart disease, diabetes and other basic diseases. The clinical application of Danshen Chuanxiongqin Injection was principally in line with the guidelines. In the treatment of cerebral infarction, it was often combined with Western medicine anticoagulant thrombolysis, antiplatelet drugs, traditional Chinese medicine blood-activating and stasis-dissolving prescription and other drugs with similar pharmacological effects, with an auxiliary therapeutic effect on patients of cerebral infarction complicated with other diseases, and can provide guidance for clinical medication.


Asunto(s)
Medicamentos Herbarios Chinos , Salvia miltiorrhiza , Anciano , Aspirina , Infarto Cerebral , China , Humanos , Masculino , Medicina Tradicional China
18.
Transbound Emerg Dis ; 67(5): 2108-2117, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32246561

RESUMEN

Avian influenza is an acute and highly contagious infectious disease that is caused by the influenza virus. Avian influenza has been widely spread all over the world, has caused property loss and has threatened human life and security. In this study, the recombinant plasmid rClone30-chGM-CSF was constructed and rescued to the recombinant virus rClone30-chGM-CSF successfully. After 8 days of immunization with the recombinant virus, the titre of NDV HI (haemagglutination inhibition) antibodies in SPF chickens reached its peak. The average titre of the rClone30-chGM-CSF group reached 6 log2 and was significantly higher than the protection critical value of 4 log2 ; the titres of the rClone30 group and the blank group were 2.86 log2 and 1 log2 , respectively, indicating that the recombinant virus can effectively improve the NDV antibody titre. Then, SPF chickens were co-immunized with the recombinant virus and with three different vaccine subtypes of inactivated avian influenza. The results indicated that the SPF chickens that were immunized with the vaccine plus rClone30-chGM-CSF showed significantly higher avian influenza antibody levels than those in the single vaccine groups. Furthermore, the SPF chickens in the vaccine plus rClone30-chGM-CSF group elicited stronger CD4+ and CD8+ T-cell proliferative responses and also had upregulated transcriptional levels of interleukin-1ß (IL-1ß), IL-4, IL-6 and IL-17 compared with those in the single vaccine groups. This study has shown that the recombinant virus expressing chicken granulocyte-macrophage colony-stimulating factor (chGM-CSF) can be used not only as an NDV vaccine to effectively improve the titre of NDV antibodies but also as a biological adjuvant to enhance the immune effects of the avian influenza vaccine. Therefore, this recombinant virus can also be used as a biological adjuvant for other poultry vaccines.

19.
Oxid Med Cell Longev ; 2019: 3462530, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31687078

RESUMEN

The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3 inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism, and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new pharmacological targets for AS treatment.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Estrés del Retículo Endoplásmico , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Homeostasis , Humanos , Transducción de Señal
20.
Cytotechnology ; 71(5): 1033-1041, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31535308

RESUMEN

ßKlotho as the major role is a necessary auxiliary protein when fibroblast growth factor 21 (FGF21) binds FGF21 receptors (FGFR) for activating intracellular signaling pathways that ultimately generate biological effects. To achieve the aim of high throughput screening of FGF21 analogues, we established 3T3-L1-ßKlotho cells that could stably express ßklotho protein. The glucose uptake, expression of GLUT1 mRNA and activation of FGF signaling molecules ERK1/2 phosphorylation were detected by GOD-POD assay, real-time PCR analysis and western blotting assay in 3T3-L1-ßKlotho cells and 3T3-L1 adipocytes, respectively. The results showed that FGF21 increased glucose uptake significantly in a dose-dependent and time-dependent manner in 3T3-L1-ßKlotho cells. 3T3-L1-ßKlotho cells stimulated with FGF21 up-regulated the transcriptional levels of GLUT1 mRNA obviously. FGF21 activated the FGF signaling molecules ERK1/2 in 3T3-L1-ßKlotho cells. In addition, the same results were obtained in 3T3-L1 adipocytes. Furthermore, FGF21-stimulated elevation of glucose uptake, GLUT1 mRNA transcription and the phosphorylation of ERK1/2 were dramatically attenuated by pretreatment of cells with FGFR specific inhibitor SU5402 in 3T3-L1-ßKlotho cells. This study demonstrated that the cell model could be applied to high throughput screen FGF21 analogues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA