Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Cardiovasc Med ; 25(8): 296, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39228472

RESUMEN

Background: This meta-analysis aimed to evaluate the impact of aerobic exercise on Peak VO2 (Oxygen Consumption) in postoperative patients with congenital heart disease (CHD). Besides this, we also tried to discover whether the improvement was influenced by patient ages, modes of supervision, types of exercise, the total dose of exercise, intervention periods, and types of CHD. Methods: Following the Population Intervention Comparison Outcome Study Design (PICOS) principle, a comprehensive search of the PubMed, Web of Science, Embase and Cochrane Library databases was conducted for randomized controlled trials (RCTs) evaluating the intervention effects of aerobic exercise on cardiopulmonary function in postoperative CHD patients until December 2023. This meta-analysis and publication bias tests were conducted using Stata 17.0, and the mean differences (MDs) with 95% confidence intervals (CIs) were used as effect sizes in statistics. Results: A total of 15 RCTs (762 cases) were included in this meta-analysis, with 407 cases in the experimental group and 355 cases in the control group. Meta-analysis showed that aerobic exercise had a positive effect on Peak VO2 in postoperative CHD patients (MD = 2.14, 95% CI (1.34, 2.94), p < 0.00001, I2 = 36%). The analysis of subgroups showed that intervention effects of aerobic exercise were superior to the control group when patients were > 18 years old (MD = 2.53, p < 0.00001), ≤ 18 years old (MD = 1.63, p = 0.01), under supervision (MD = 2.23, p < 0.00001), unsupervised (MD = 2.06, p < 0.00400), performing aerobic exercise (MD = 1.87, p = 0.0003), performing aerobic exercise combined with resistance training (MD = 2.57, p < 0.00010), with a total dose of exercise ≥ 1440 minutes (MD = 2.45, p < 0.00010), with the intervention period of 10-12 weeks (MD = 2.31, p < 0.00001), with that > 12 weeks (MD = 1.97, p = 0.00300), or with mixed types of CHD (MD = 2.34, p < 0.00001). Conclusions: This meta-analysis did not deduct points for limitations, inconsistency, indirectness, imprecision, or publication bias, so the quality of evidence was graded as high. Aerobic exercise has a significantly positive impact on improving Peak VO2 in postoperative CHD patients. Moreover, it was found that for patients aged 18 and above, supervised aerobic exercise combined with resistance training, implemented for 10-12 weeks with a total dose of exercise ≥ 1440 minutes, had a better intervention effect on Peak VO2. This finding provided evidence-based medicine for the exercise rehabilitation of postoperative CHD patients, and explored the optimal exercise prescription for clinical practice as well. Clinical Trial registration: Registered on INPLASY No.202440016 (https://inplasy.com).

2.
J Clin Transl Hepatol ; 12(9): 765-779, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39280071

RESUMEN

Background and Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more advanced form, metabolic dysfunction-associated steatohepatitis, have emerged as the most prevalent liver diseases worldwide. Currently, lifestyle modification is the foremost guideline-recommended management strategy for MASLD. However, it remains unclear which detrimental signals persist in MASLD even after disease remission. Thus, we aimed to examine the persistent changes in liver transcriptomic profiles following this reversal. Methods: Male C57BL/6J mice were divided into three groups: Western diet (WD) feeding, chow diet (CD) feeding, or diet reversal from WD to CD. After 16 weeks of feeding, RNA sequencing was performed on the mice's livers to identify persistent alterations characteristic of MASLD. Additionally, RNA sequencing databases containing high-fat diet-fed P53-knockout mice and human MASLD samples were utilized. Results: WD-induced MASLD triggered persistent activation of the DNA damage response (DDR) and its primary transcription factor, P53, long after the resolution of the hepatic phenotype through dietary reversal. Elevated levels of P53 might promote apoptosis, thereby exacerbating metabolic dysfunction-associated steatohepatitis, as they strongly correlated with hepatocyte ballooning, an indicator of apoptosis activation. Moreover, P53 knockout in mice led to downregulated expression of apoptosis signaling in the liver. Mechanistically, P53 may regulate apoptosis by transcriptionally activating the expression of apoptosis-enhancing nuclease (AEN). Consistently, P53, AEN, and the apoptosis process all exhibited persistently elevated expression and showed a strong inter-correlation in the liver following dietary reversal. Conclusions: The liver demonstrated upregulation of DDR signaling and the P53-AEN-apoptosis axis both during and after exposure to WD. Our findings provide new insights into the mechanisms of MASLD relapse, highlighting DDR signaling as a promising target to prevent MASLD recurrence.

3.
Front Microbiol ; 15: 1458754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323880

RESUMEN

Background: Research on the effects of intestinal microbiota transplantation (IMT) on chronic HBV infection (CHB) progression associated liver disease (HBV-CLD) and alterations in the microbiota post-IMT are quite limited for the moment. Methods: By integrating microbiome with metabolome analyses, we aimed to the function of IMT and the alterations of gut microbiota in patients with HBV-CLD. First, this study included 20 patients with HBV-CLD and ten healthy controls. Then, 16 patients with CHB were given IMT with donor feces (heterologous) via oral capsule. Fecal samples from CHB patients were obtained before and after IMT, as well as healthy controls, for 16S rDNA sequencing and untargeted metabolomics analysis. Results: The proalbuminemia were significantly increased after IMT, and the HBsAg and TBA showed a significant decrease after IMT in the HBV-CLD patients. There was statistical difference in the Chaol indexes between between CHB patients and healthy controls, suggesting a lower abundance of the gut microbiota in HBV-CLD patients. In addition, there was statistical difference in the Shannon and Simpson indexes between prior to IMT and post-IMT, indicating that the impaired abundance of the gut microbiota had been improved after IMT. The host-microbiota-metabolite interplay, amino acid metabolism, nicotinate and nicotinamide metabolism, starch and sucrose metabolism, steroid biosynthesis, and vitamins metabolism, were significantly lower in HBV-CLD patients than healthy controls. Conclusion: IMT may improve the therapeutic effects on patients HBV-CLD. Furthermore, IMT appears to improve amino acid metabolism by impaired abundance of the gut microbiota and therefore improve liver prealbumin synthesis.

4.
J Sport Health Sci ; : 100968, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187065

RESUMEN

BACKGROUND: Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS: Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS: In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION: Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.

5.
Int J Biol Macromol ; 277(Pt 3): 134401, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097049

RESUMEN

An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.


Asunto(s)
Metabolismo Energético , Microbioma Gastrointestinal , Nanofibras , Obesidad , Animales , Nanofibras/química , Obesidad/metabolismo , Obesidad/prevención & control , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Celulosa/farmacología , Celulosa/química , Masculino , Resistencia a la Insulina , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Solubilidad , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/farmacología , Fibras de la Dieta/farmacología
6.
Cell Metab ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39146936

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), including its more severe manifestation nonalcoholic steatohepatitis (NASH), is a global public health challenge. Here, we explore the role of deubiquitinating enzyme RPN11 in NAFLD and NASH. Hepatocyte-specific RPN11 knockout mice are protected from diet-induced liver steatosis, insulin resistance, and steatohepatitis. Mechanistically, RPN11 deubiquitinates and stabilizes METTL3 to enhance the m6A modification and expression of acyl-coenzyme A (CoA) synthetase short-chain family member 3 (ACSS3), which generates propionyl-CoA to upregulate lipid metabolism genes via histone propionylation. The RPN11-METTL3-ACSS3-histone propionylation pathway is activated in the livers of patients with NAFLD. Pharmacological inhibition of RPN11 by Capzimin ameliorated NAFLD, NASH, and related metabolic disorders in mice and reduced lipid contents in human hepatocytes cultured in 2D and 3D. These results demonstrate that RPN11 is a novel regulator of NAFLD/NASH and that suppressing RPN11 has therapeutic potential for the treatment.

7.
Vet Sci ; 11(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39057989

RESUMEN

Porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA) are the four main pathogens that cause viral diarrhea in pigs, and they often occur in mixed infections, which are difficult to distinguish only according to clinical symptoms. Here, we developed a multiplex TaqMan-probe-based real-time RT-PCR method for the simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA for the first time. The specific primers and probes were designed for the M protein gene of PEDV, N protein gene of TGEV, N protein gene of PDCoV, and VP7 protein gene of PoRVA, and corresponding recombinant plasmids were constructed. The method showed extreme specificity, high sensitivity, and excellent repeatability; the limit of detection (LOD) can reach as low as 2.18 × 102 copies/µL in multiplex real-time RT-PCR assay. A total of 97 clinical samples were used to compare the results of the conventional reverse transcription PCR (RT-PCR) and this multiplex real-time RT-PCR for PEDV, TGEV, PDCoV, and PoRVA detection, and the results were 100% consistent. Subsequently, five randomly selected clinical samples that tested positive were sent for DNA sequencing verification, and the sequencing results showed consistency with the detection results of the conventional RT-PCR and our developed method in this study. In summary, this study developed a multiplex real-time RT-PCR method for simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA, and the results of this study can provide technical means for the differential diagnosis and epidemiological investigation of these four porcine viral diarrheic diseases.

8.
PLoS Biol ; 22(5): e3002621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805565

RESUMEN

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Colesterol , Progresión de la Enfermedad , Factor Nuclear 3-gamma del Hepatocito , Neoplasias Pulmonares , Colesterol/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Animales , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Ratones , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular
9.
J Inflamm Res ; 17: 1241-1253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415263

RESUMEN

Purpose: Postoperative cognitive dysfunction (POCD) is a central nervous system complication that occurs after anesthesia, particularly among the elderly. However, the neurological pathogenesis of postoperative cognitive dysfunction remains unclear. The aim of this study was to evaluate the effects of sevoflurane exposure on serum metabolites and hippocampal gene expression in elderly patients and aging mice by metabolomics and transcriptomic analysis and to explore the pathogenesis of sevoflurane induced POCD. Patients and Methods: Human serum samples from five patients over 60 years old were collected before sevoflurane anesthesia and 1 hour after anesthesia. Besides, mice aged at 12 months (n=6 per group) were anesthetized with sevoflurane for 2 hours or with sham procedure. Subsequently, serum and hippocampal tissues were harvested for analysis. Further investigation into the relationship between isatin and neuroinflammation was conducted using BV2 microglial cells. Results: Sevoflurane anesthesia led to the activation of inflammatory pathways, an increased presence of hippocampal astrocytes and microglia, and elevated expression of neuroinflammatory cytokines. Comparative analysis identified 12 differential metabolites that exhibited changes in both human and mouse serum post-sevoflurane anesthesia. Notably, isatin levels were significantly decreased after anesthesia. Notably, isatin levels significantly decreased after anesthesia, a factor known to stimulate proliferation and proinflammatory gene expression in microglia-the pivotal cell type in inflammatory responses. Conclusion: Sevoflurane-induced alterations in serum metabolites in both elderly patients and aging mice, subsequently contributing to increased inflammation in the hippocampus.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37951383

RESUMEN

The disruption of the diurnal rhythm has been recognized as a significant contributing factor to metabolic dysregulation. The important role of gut microbiota and bile acid metabolism has attracted extensive attention. However, the function of the gut microbiota-bile acid axis in regulating the diurnal rhythms of metabolic homeostasis remains largely unknown. Herein, we aimed to investigate the interplay between rhythmicity of host metabolism and gut microbiota-bile acid axis, as well as to assess the impact of obesity on them. We found that high fat diet feeding and Leptin gene deficiency (ob/ob) significantly disturbed the rhythmic patterns of insulin sensitivity and serum total cholesterol levels. The bile acid profiling unveiled a conspicuous diurnal rhythm oscillation of ursodeoxycholic acid (UDCA) in lean mice, concomitant with fluctuations in insulin sensitivity, whereas it was absent in obese mice. The aforementioned diurnal rhythm oscillations were largely desynchronized by gut microbiota depletion, suggesting the indispensable role of gut microbiota in diurnal regulation of insulin sensitivity and bile acid metabolism. Consistently, 16S rRNA sequencing revealed that UDCA-associated bacteria exhibited diurnal rhythm oscillations that paralleled the fluctuation in insulin sensitivity. Collectively, the current study provides compelling evidence regarding the association between diurnal rhythm of insulin sensitivity and gut microbiota-bile acid axis. Moreover, we have elucidated the deleterious effects of obesity on gut microbiome-bile acid metabolism in both the genetic obesity model and the diet-induced obesity model.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Animales , Ratones , ARN Ribosómico 16S , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos y Sales Biliares , Ácido Ursodesoxicólico , Ritmo Circadiano
11.
Biomed Pharmacother ; 166: 115434, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37677965

RESUMEN

Renal interstitial fibrosis (RIF), a progressive process affecting the kidneys in chronic kidney disease (CKD), currently lacks an effective therapeutic intervention. Traditional Chinese medicine (TCM) has shown promise in reducing RIF and slowing CKD progression. In this study, we demonstrated the dose-dependent attenuation of RIF by Ootheca mantidis (SPX), a commonly prescribed TCM for CKD, in a mouse model of unilateral ureteral obstruction (UUO). RNA-sequencing analysis suggested that SPX treatment prominently downregulated apoptosis and inflammation-associated pathways, thereby inhibiting the fibrogenic signaling in the kidney. We further found that transplantation of fecal microbiota from SPX-treated mice conferred protection against renal injury and fibrosis through suppressing apoptosis in UUO mice, indicating that SPX ameliorated RIF via remodeling the gut microbiota and reducing apoptosis in the kidneys. Further functional exploration of the gut microbiota combined with fecal metabolomics revealed increased levels of some probiotics, including Akkermansia muciniphila (A. muciniphila), and modulations in glutamine-related amino acid metabolism in UUO mice treated with SPX. Subsequent colonization of A. muciniphila and supplementation with glutamine effectively mitigated cell apoptosis and RIF in UUO mice. Collectively, these findings unveil a functionally A. muciniphila- and glutamine-involved gut-renal axis that contributes to the action of SPX, and provide important clue for the therapeutic potential of SPX, A. muciniphila, and glutamine in combatting RIF.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Ratones , Glutamina , Apoptosis , Fibrosis
12.
Diabetes ; 72(11): 1574-1596, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579296

RESUMEN

Thermogenic adipocytes have been extensively investigated because of their energy-dissipating property and therapeutic potential for obesity and diabetes. Besides serving as fuel sources, accumulating evidence suggests that intermediate metabolites play critical roles in multiple biological processes. However, their role in adipocyte differentiation and thermogenesis remains unexplored. Here, we report that human and mouse obesity is associated with marked downregulation of glutamine synthetase (Glul) expression and activity in thermogenic adipose tissues. Glul is robustly upregulated during brown adipocyte (BAC) differentiation and in brown adipose tissue (BAT) upon cold exposure and Cl316,243 stimulation. Further genetic, pharmacologic, or metabolic manipulations of Glul and glutamine levels reveal that glutamine cells autonomously stimulate BAC differentiation and function and BAT remodeling and improve systemic energy homeostasis in mice. Mechanistically, glutamine promotes transcriptional induction of adipogenic and thermogenic gene programs through histone modification-mediated chromatin remodeling. Among all the glutamine-regulated writer and eraser genes responsible for histone methylation and acetylation, only Prdm9, a histone lysine methyltransferase, is robustly induced during BAC differentiation. Importantly, Prdm9 inactivation by shRNA knockdown or a selective inhibitor attenuates glutamine-triggered adipogenic and thermogenic induction. Furthermore, Prdm9 gene transcription is regulated by glutamine through the recruitment of C/EBPb to its enhancer region. This work reveals glutamine as a novel activator of thermogenic adipocyte differentiation and uncovers an unexpected role of C/EBPb-Prdm9-mediated H3K4me3 and transcriptional reprogramming in adipocyte differentiation and thermogenesis.

14.
Arch Virol ; 168(4): 129, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004683

RESUMEN

A rabbit rotavirus Z3171 isolate from diarrheic rabbits was identified and sequenced. The genotype constellation of Z3171 is G3-P[22]-I2-R3-C3-M3-A9-N2-T1-E3-H3, which is different from the constellation observed in previously characterized LRV strains. However, the genome of Z3171 differed substantially from those of the rabbit rotavirus strains N5 and Rab1404 in terms of both gene content and gene sequence. Our study suggests that either a reassortment event occurred between human and rabbit rotavirus strains or there are undetected genotypes circulating in the rabbit population. This is the first report of detection of a G3P[22] RVA strain in rabbits in China.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Conejos , Humanos , Rotavirus/genética , Infecciones por Rotavirus/veterinaria , Genoma Viral , Filogenia , Genómica , Genotipo , China
15.
J Mol Cell Biol ; 15(3)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-36882217

RESUMEN

Exercise intervention at the early stage of type 2 diabetes mellitus (T2DM) can aid in the maintenance of blood glucose homeostasis and prevent the development of macrovascular and microvascular complications. However, the exercise-regulated pathways that prevent the development of T2DM remain largely unclear. In this study, two forms of exercise intervention, treadmill training and voluntary wheel running, were conducted for high-fat diet (HFD)-induced obese mice. We observed that both forms of exercise intervention alleviated HFD-induced insulin resistance and glucose intolerance. Skeletal muscle is recognized as the primary site for postprandial glucose uptake and for responsive alteration beyond exercise training. Metabolomic profiling of the plasma and skeletal muscle in Chow, HFD, and HFD-exercise groups revealed robust alterations in metabolic pathways by exercise intervention in both cases. Overlapping analysis identified nine metabolites, including beta-alanine, leucine, valine, and tryptophan, which were reversed by exercise treatment in both the plasma and skeletal muscle. Transcriptomic analysis of gene expression profiles in the skeletal muscle revealed several key pathways involved in the beneficial effects of exercise on metabolic homeostasis. In addition, integrative transcriptomic and metabolomic analyses uncovered strong correlations between the concentrations of bioactive metabolites and the expression levels of genes involved in energy metabolism, insulin sensitivity, and immune response in the skeletal muscle. This work established two models of exercise intervention in obese mice and provided mechanistic insights into the beneficial effects of exercise intervention on systemic energy homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Animales , Humanos , Transcriptoma , Ratones Obesos , Diabetes Mellitus Tipo 2/metabolismo , Actividad Motora , Dieta Alta en Grasa/efectos adversos , Metaboloma , Músculo Esquelético/metabolismo , Terapia por Ejercicio , Ratones Endogámicos C57BL
16.
Anal Chim Acta ; 1251: 341039, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36925303

RESUMEN

The gut microbiota interacts with the host via production of various metabolites of dietary nutrients. Herein, we proposed the concept of the gut microbiota-derived core nutrient metabolome, which covers 43 metabolites in carbohydrate metabolism, glycolysis, tricarboxylic acid cycle and amino acid metabolism, and established a quantitative UPLC-Q/TOF-MS method through 3-nitrophenylhydrazine derivatization to investigate the influence of obesity on the gut microbiota in mice. All metabolites could be simultaneously analyzed via separation on a BEH C18 column within 18 min. The lower limits of quantification of most analytes were less than 1 µM. Validation results demonstrated suitability for the analysis of mouse fecal samples. The method was then applied to detect the gut microbiota-derived nutrient metabolome in the feces of high-fat diet induced obese (DIO) and ob/ob (leptin-deficient) mice, as well as obesity-prone (OP) and obesity-resistant (OR) mice. Compared to the control groups, there were 13, 23 and 10 differentially abundant metabolites detected in ob/ob, DIO and OP groups, respectively. Among them, amino acids including leucine, isoleucine, glycine, methionine, tyrosine and glutamine were co-downregulated in the obese or OP mice and exhibited inverse association with body weight. 16S rDNA analysis revealed that the genera Lactobacillus and Dubosiella were also inversely associated with body weight and positively correlated with fecal amino acids. Collectively, our work provides an effective and simplified method for simultaneous quantifying the gut microbiota-derived core nutrient metabolome in mouse feces, which could assist various future studies on host-microbiota metabolic interaction.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Metaboloma , Heces , Obesidad/metabolismo , Aminoácidos/metabolismo , Nutrientes
17.
Int J Biol Sci ; 19(3): 772-788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778128

RESUMEN

Xanthine dehydrogenase (XDH) is the rate-limiting enzyme in purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. The altered expression and activity of XDH are associated with the development and prognosis of multiple types of cancer, while its role in lung adenocarcinoma (LUAD) remains unknown. Herein, we demonstrated that XDH was highly expressed in LUAD and was significantly correlated with poor prognosis. Though inhibition of XDH displayed moderate effect on the viability of LUAD cells cultured in the complete medium, it significantly attenuated the survival of starved cells. Similar results were obtained in XDH-knockout cells. Nucleosides supplementation rescued the survival of starved LUAD cells upon XDH inhibition, while inhibition of purine nucleoside phosphorylase abrogated the process, indicating that nucleoside degradation is required for the XDH-mediated survival of LUAD cells. Accordingly, metabolic flux revealed that ribose derived from nucleoside fueled key carbon metabolic pathways to sustain the survival of starved LUAD cells. Mechanistically, down-regulation of XDH suppressed unfolded protein response (UPR) and autophagic flux in starved LUAD cells. Inhibition of XDH decreased the level of amino acids produced by autophagic degradation, which was accompanied with down-regulation of mTORC1 signaling. Supplementation of amino acids including glutamine or glutamate rescued the survival of starved LUAD cells upon knockout or inhibition of XDH. Finally, XDH inhibitors potentiated the anti-cancer activity of 2-deoxy-D-glucose that induced UPR and/or autophagy in vitro and in vivo. In summary, XDH plays a crucial role in the survival of starved LUAD cells and targeting XDH may improve the efficacy of drugs that induce UPR and autophagy in the therapy of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Nucleósidos/metabolismo , Adenocarcinoma del Pulmón/genética , Autofagia/genética , Respuesta de Proteína Desplegada , Neoplasias Pulmonares/patología , Xantinas , Nutrientes , Aminoácidos/metabolismo
18.
Anim Biotechnol ; 34(5): 1807-1814, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35593671

RESUMEN

Rotaviruses are rising as zoonotic viruses worldwide, causing the lethal dehydrating diarrhea in children, piglets, and other livestock of economic importance. A simple, swift, cost-effective, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of porcine rotavirus-A (PoRVA) by employing rabbit (capture antibody) and murine polyclonal antibodies (detector antibody) produced against VP6 of PoRVA (RVA/Pig-tc/CHN/TM-a/2009/G9P23). Reactivity of the both polyclonal antibodies was confirmed by using an indirect ELISA, western-blot analysis and indirect fluorescence assay against rVP6 protein and PoRVA. The detection limit of AC-ELISA was found 50 ng/ml of PoRVA protein. The relative sensitivity and specificity of this in-house AC-ELISA were evaluated for detection of PoRVA from 295 porcine diarrhea samples, and results were compared with that of RT-PCR and TaqMan RT-qPCR. The relative sensitivity and specificity of AC-ELISA compared with those of TaqMan RT-qPCR were found as 94.4 and 99.2%, respectively, with the strong agreement (κ -0.58) between these two techniques. Furthermore, AC-ELISA could not detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastro-enteritis virus, pseudo rabies virus and porcine circovirus-2. This in-house AC-ELISA efficiently detected PoRVA from clinical samples, which suggests that this technique can be used for large-scale surveillance and timely detection of rotavirus infection in the porcine farms.


In this study, we used a Chinese porcine rotavirus-A (PoRVA) strain containing the I5, a dominant VP6-genotype in pigs, for production of VP6 (most conserved) protein based polyclonal antibodies (pAb) in rabbits (as capture Ab) and mouse (as detector Ab) for development of simple, cost effective, highly specific and sensitive AC-ELISA for detection of PoRVA. Furthermore, there is no any previous published report on application of rabbit and mouse pAb against VP6 for developing an AC-ELISA against PoRVA.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Enfermedades de los Porcinos , Animales , Porcinos , Conejos , Ratones , Infecciones por Rotavirus/diagnóstico , Infecciones por Rotavirus/veterinaria , Diarrea , Ensayo de Inmunoadsorción Enzimática/veterinaria , Anticuerpos Antivirales , Sensibilidad y Especificidad , Enfermedades de los Porcinos/diagnóstico
19.
Microbiome ; 10(1): 226, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36517893

RESUMEN

OBJECTIVE: High intake of caffeoylquinic acid (CQA)-rich dietary supplements, such as green coffee bean extracts, offers health-promoting effects on maintaining metabolic homeostasis. Similar to many active herbal ingredients with high pharmacological activities but low bioavailability, CQA has been reported as a promising thermogenic agent with anti-obesity properties, which contrasts with its poor oral absorption. Intestinal tract is the first site of CQA exposure and gut microbes might react quickly to CQA. Thus, it is of interest to explore the role of gut microbiome and microbial metabolites in the beneficial effects of CQA on obesity-related disorders. RESULTS: Oral CQA supplementation effectively enhanced energy expenditure by activating browning of adipose and thus ameliorated obesity-related metabolic dysfunctions in high fat diet-induced obese (DIO) mice. Here, 16S rRNA gene amplicon sequencing revealed that CQA treatment remodeled the gut microbiota to promote its anti-obesity actions, as confirmed by antibiotic treatment and fecal microbiota transplantation. CQA enriched the gut commensal species Limosilactobacillus reuteri (L. reuteri) and stimulated the production of short-chain fatty acids, especially propionate. Mono-colonization of L. reuteri or low-dose CQA treatment did not reduce adiposity in DIO mice, while their combination elicited an enhanced thermogenic response, indicating the synergistic effects of CQA and L. reuteri on obesity. Exogenous propionate supplementation mimicked the anti-obesity effects of CQA alone or when combined with L. reuteri, which was ablated by the monocarboxylate transporter (MCT) inhibitor 7ACC1 or MCT1 disruption in inguinal white adipose tissues to block propionate transport. CONCLUSIONS: Our data demonstrate a functional axis among L. reuteri, propionate, and beige fat tissue in the anti-obesity action of CQA through the regulation of thermogenesis. These findings provide mechanistic insights into the therapeutic use of herbal ingredients with poor bioavailability via their interaction with the gut microbiota. Video Abstract.


Asunto(s)
Adiposidad , Limosilactobacillus reuteri , Ratones , Animales , ARN Ribosómico 16S/metabolismo , Propionatos , Obesidad/complicaciones , Dieta Alta en Grasa , Ratones Endogámicos C57BL
20.
Cell Stem Cell ; 29(9): 1366-1381.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055192

RESUMEN

Although disrupted bile acid (BA) homeostasis is implicated in inflammatory bowel disease (IBD), the role of hepatic BA metabolism in the pathogenesis of colitis is poorly understood. Here, we found that cholic acid (CA) levels were increased in patients and mice. Cytochrome P450 8B1 (CYP8B1), which synthesizes CA, was induced in livers of colitic mice. CA-treated or liver Cyp8b1-overexpressing mice developed more severe colitis with compromised repair of the mucosal barrier, whereas Cyp8b1-knockout mice were resistant to colitis. Mechanistically, CA inhibited peroxisome proliferator-activated receptor alpha (PPARα), resulting in impeded fatty acid oxidation (FAO) and impaired Lgr5+ intestinal stem cell (ISC) renewal. A PPARα agonist restored FAO and improved Lgr5+ ISC function. Activation of the farnesoid X receptor (FXR) suppressed liver CYP8B1 expression and ameliorated colitis in mice. This study reveals a connection between the hepatic CYP8B1-CA axis and colitis via regulating intestinal epithelial regeneration, suggesting that BA-based strategies might be beneficial in IBD treatment.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ácidos y Sales Biliares , Autorrenovación de las Células , Ácido Cólico/metabolismo , Ácido Cólico/farmacología , Colitis/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...