Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 107: 129776, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692523

RESUMEN

Human cytochrome P450 1B1 enzyme (hCYP1B1), a member of hCYP1 subfamily, plays a crucial role in multiple diseases by participating in many metabolic pathways. Although a suite of potent hCYP1B1 inhibitors have been previously reported, most of them also act as aryl hydrocarbon receptor (AhR) agonists that can up-regulate the expression of hCYP1B1 and then counteract their inhibitory potential in living systems. This study aimed to develop novel efficacious hCYP1B1 inhibitors that worked well in living cells but without AhR agonist effects. For these purposes, a series of 1,8-naphthalimide derivatives were designed and synthesized, and their structure-activity relationships (SAR) as hCYP1B1 inhibitors were analyzed. Following three rounds SAR studies, several potent hCYP1B1 inhibitors were discovered, among which compound 3n was selected for further investigations owing to its extremely potent anti-hCYP1B1 activity (IC50 = 0.040 nM) and its blocking AhR transcription activity in living cells. Inhibition kinetic analyses showed that 3n potently inhibited hCYP1B1 via a mix inhibition manner, showing a Ki value of 21.71 pM. Docking simulations suggested that introducing a pyrimidine moiety to the hit compound (1d) facilitated 3n to form two strong interactions with hCYP1B1/heme, viz., the C-Br⋯π halogen bond and the N-Fe coordination bond. Further investigations demonstrated that 3n (5 µM) could significantly reverse the paclitaxel (PTX) resistance in H460/PTX cells, evidenced by the dramatically reduced IC50 values, from 632.6 nM (PTX alone) to 100.8 nM (PTX plus 3n). Collectively, this study devised a highly potent hCYP1B1 inhibitor (3n) without AhR agonist effect, which offered a promising drug candidate for overcoming hCYP1B1-associated drug resistance.


Asunto(s)
Citocromo P-450 CYP1B1 , Diseño de Fármacos , Naftalimidas , Humanos , Relación Estructura-Actividad , Naftalimidas/farmacología , Naftalimidas/química , Naftalimidas/síntesis química , Citocromo P-450 CYP1B1/antagonistas & inhibidores , Citocromo P-450 CYP1B1/metabolismo , Estructura Molecular , Relación Dosis-Respuesta a Droga
2.
Chemosphere ; 349: 140871, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056714

RESUMEN

λ-Cyhalothrin (λ-cyh), a widely utilized pyrethroid insecticide, poses serious threats to non-target organisms due to its persistence nature in the environment. Exposure to low concentrations of λ-cyh has been observed to result in prolonged larval development in Bombyx mori, leading to substantial financial losses in sericulture. The present study was undertaken to elucidate the underlying mechanisms for prolonged development caused by λ-cyh (LC10) exposure. The results showed that the JH Ⅲ titer was significantly increased at 24 h of λ-cyh exposure, and the JH interacting genes Methoprene-tolerant 2, Steroid Receptor Co-activator, Krüppel-homolog 1, and JH binding proteins were also up-regulated. Although the target of rapamycin (Tor) genes were induced by λ-cyh, the biosynthesis of JH in the corpora allata was not promoted. Notably, 13 JH degradation genes were found to be significantly down-regulated in the midgut of B. mori. The mRNA levels and enzyme activity assays indicated that λ-cyh had inhibitory effects on JH esterase, JH epoxide hydrolase, and JH diol kinase (JHDK). Furthermore, the suppression of JHDK (KWMTBOMO01580) was further confirmed by both western blot and immunohistochemistry. This study has offered a comprehensive perspective on the mechanisms underlying the prolonged development caused by insecticides, and our results also hold significant implications for the safe production of sericulture.


Asunto(s)
Bombyx , Piretrinas , Animales , Bombyx/genética , Bombyx/metabolismo , Nitrilos/toxicidad , Nitrilos/metabolismo , ARN Mensajero/metabolismo , Piretrinas/toxicidad , Piretrinas/metabolismo , Hormonas Juveniles/metabolismo , Larva/metabolismo , Proteínas de Insectos/genética
3.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628915

RESUMEN

The Duox-ROS defense system plays an important role in insect intestinal immunity. To investigate the role of intestinal microbiota in Duox-ROS regulation herein, 16S rRNA sequencing technology was utilized to compare the characteristics of bacterial populations in the midgut of silkworm after different time-periods of treatment with three feeding methods: 1-4 instars artificial diet (AD), 1-4 instars mulberry leaf (ML) and 1-3 instars artificial diet + 4 instar mulberry leaf (TM). The results revealed simple intestinal microbiota in the AD group whilst microbiota were abundant and variable in the ML and TM silkworms. By analyzing the relationship among intestinal pH, reactive oxygen species (ROS) content and microorganism composition, it was identified that an acidic intestinal environment inhibited the growth of intestinal microbiota of silkworms, observed concurrently with low ROS content and a high activity of antioxidant enzymes (SOD, TPX, CAT). Gene expression associated with the Duox-ROS defense system was detected using RT-qPCR and identified to be low in the AD group and significantly higher in the TM group of silkworms. This study provides a new reference for the future improvement of the artificial diet feeding of silkworm and a systematic indicator for the further study of the relationship between changes in the intestinal environment and intestinal microbiota balance caused by dietary alterations.


Asunto(s)
Bombyx , Morus , Animales , Bombyx/genética , ARN Ribosómico 16S/genética , Especies Reactivas de Oxígeno , Frutas , Bacterias/genética
4.
Arch Insect Biochem Physiol ; 113(2): e22011, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938839

RESUMEN

Changes in both intake and digestion of feed have been demonstrated in the host following parasitization. However, its regulatory mechanism has not been clarified. In this study, silkworms and Exorista japonica were used as research objects to analyze the effect of parasitism on the midgut immune system of the silkworm. After being parasitized, the expressions of antimicrobial peptide (AMP) genes of silkworms showed a fluctuating trend of first upregulation and then downregulation, while phenoloxidase and lysozyme activities were inhibited. To study the possible impact of the downregulation of AMP genes on intestinal microorganisms, the characteristics of the intestinal microbial population of silkworms on the third day of parasitism were analyzed. The relative abundance of Firmicutes, Proteobacteria, and Bacteroidota decreased, while that of Actinobacteriota increased. The increased abundance of conditionally pathogenic bacteria Serratia and Staphylococcus might lead to a decrease in the amount of silkworm ingestion. Meanwhile, the abundance of Acinetobacter, Bacillus, Pseudomonas, and Enterobacter promotes an increase in the digestion of nutrients. This study indicated that the imbalance of intestinal microbial homeostasis caused by parasitism may affect the absorption and digestion of nutrients by the host. Collectively, our findings provided a new clue for further exploring the mechanism of nutrient transport among the host, parasitoid, and intestinal microorganisms.


Asunto(s)
Bombyx , Dípteros , Microbioma Gastrointestinal , Animales , Bombyx/metabolismo , Bacterias , Dieta
5.
J Virol Methods ; 310: 114624, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36165821

RESUMEN

Here, we develop a simple, efficient, bacmid-based, selection marker-free method for gene deletion and editing in baculovirus genomes. Specifically, based on pFastbac1, a donor plasmid with long left and right homology arms but without a reporter was constructed for disrupting ie1, an essential baculovirus gene. Instead of ligating with a plasmid, the homology arms were introduced to the polyhedrin locus of BmNPV bacmid using the BmNPV bac-to-bac expression system. Two viruses generated from the modified bacmid and unmodified BmNPV bacmid were then used to co-infect BmN cells in order that recombination takes place at the ie1 locus between them. Finally, without multiple rounds of purification, total cellular DNA was isolated, transformed into Cacl2-treated competent DH10B cells, and then blue colonies were selected for PCR screening. Remarkably, the proportion of blue colonies containing ie1-disrupted bacmid was found to be around 7 %. Moreover, using primers flanking the homology arms further confirmed that all these positive recombinants were double crossovers. These findings indicate that our method is also capable of gene modification if inverse PCR or seamless cloning is used to construct the donor plasmid and sequencing is employed to select positive colonies.


Asunto(s)
Baculoviridae , Bombyx , Animales , Baculoviridae/genética , Eliminación de Gen , Cloruro de Calcio , ADN
6.
Environ Sci Pollut Res Int ; 29(5): 7604-7613, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480300

RESUMEN

This study investigated the isotope effects of δ13C and δ15N and microbial response during biodegradation of hydrocarbons by biostimulation with nitrate or compost in the petroleum-contaminated soil. Compost and KNO3 amendments promoted the total petroleum hydrocarbon (TPH) removal accompanied by a significant increase of Actinobacteria and Firmicutes phyla. Soil alpha diversity decreased after 90 days of biostimulation. An inverse significant carbon isotope effect (εc = 16.6 ± 0.8‰) and strong significant nitrogen isotope effect (εN = -24.20 ± 9.54‰) were shown by the KNO3 supplementation. For compost amendment, significant carbon and nitrogen isotope effect were εc = 38.8 ± 1.1‰ and εN = -79.49 ± 16.41‰, respectively. A clear difference of the carbon and nitrogen stable isotope fractionation was evident by KNO3 or compost amendment, which indicated that the mechanisms of petroleum degradation by adding compost or KNO3 may be different.


Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Isótopos de Carbono/análisis , Hidrocarburos , Petróleo/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
7.
Chemosphere ; 256: 126998, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32470727

RESUMEN

Efficient degradation of polycyclic aromatic hydrocarbons (PAHs) in a petroleum-contaminated soil was challenging which requires ample PAH-degrading flora and nutrients. In this study, we investigated the effects of 'natural attenuation', 'bioaugmentation', 'compost only (raw materials of compost included pig manure and rice husk mixed at a 1:2 proportion, supplemented with 2.5% charcoal)', and 'compost with bioaugmentation' treatments on degradation of polycyclic aromatic hydrocarbons (PAHs) and microbial community shifts during the remediation of petroleum-contaminated soil. After sixteen weeks of incubation, the removal efficiencies of PAHs were 0.52 ± 0.04%, 6.92 ± 0. 32%, 9.53 ± 0.29%, and 18.2 ± 0.64% in the four treatments, respectively. 'Compost with bioaugmentation' was the most effective for PAH removal among all the treatments. Illumina sequencing analysis suggested that both the 'compost only' and 'compost with bioaugmentation' treatments changed soil microbial community structures and enhanced microbial biodiversity. Some of the microorganisms affiliated with the compost including Azomonas, Luteimonas, Pseudosphingobacterium, and Parapedobacter were able to survive and become dominant in the contaminated soil. The 'bioaugmentation and 'natural attenuation' treatments had no significant effects on soil microbial community structure. Inoculation of the PAH degraders including Bacillus, Pseudomonas, and Acinetobacter directly into the contaminated soil led to lower biodiversity under natural conditions. This result suggested that compost addition increased the α-diversity of both the bacterial and fungal communities in petroleum-contaminated soil, leading to higher PAH degradation efficiency in petroleum-contaminated soil.


Asunto(s)
Petróleo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Animales , Bacterias/metabolismo , Biodegradación Ambiental , Carbón Orgánico/metabolismo , Compostaje , Restauración y Remediación Ambiental , Microbiota , Hidrocarburos Policíclicos Aromáticos/análisis , Pseudomonas/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Porcinos
8.
Environ Sci Pollut Res Int ; 27(14): 16293-16316, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32124277

RESUMEN

As a significant economic region in China, the Yangtze River Economic Zone has close spatial and sectoral linkages and generates considerable CO2 emissions. Reducing CO2 emissions in the Yangtze River Economic Zone (YREZ) while considering both inter-regional and inter-sectoral connections has become an essential issue. Based on a multi-regional input-output model and complex network theory, this study constructed a network with inter-regional and inter-sectoral CO2 emission flows in the YREZ simultaneously to reveal sectoral and spatial transfer pattern and identify the key sectors at the provincial level. The results of density, connectedness, hierarchy, and efficiency showed that the CO2 flow network was vulnerable and sensitive. The key provincial sectors were identified through different network indicators, including degree centrality, betweenness centrality, and eigenvector centrality. According to their characteristics, the 66 sectors were categorized into different communities with the roles of suppliers, receivers, and intermediaries. The findings of this study provided an integral map of CO2 emission flows in the YREZ so that the specific and comprehensive policies could be designed from sectoral and provincial level to avoid the offset of different policies.


Asunto(s)
Dióxido de Carbono/análisis , Ríos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...