Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Int ; 186: 108625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593690

RESUMEN

The potential of microplastics to act as a vector for anthropogenic contaminants is of rising concern. However, directly quantitatively determining the vector effects of microplastics has been rarely studied. Here, we present a dual-dosing method that simulates the chemical bioaccumulation from soil and microplastics simultaneously, wherein unlabeled hydrophobic organic contaminants (HOCs) were spiked in the soil and their respective isotope-labeled reference compounds were spiked on the polyethylene microplastics. The comparison of the bioavailability, i.e., the freely dissolved concentration in soil porewater and bioaccumulation by earthworm, between the unlabeled and isotope-labeled HOCs was carried out. Relatively higher level of bioavailability of the isotope-labeled HOCs was observed compared to the unlabeled HOCs, which may be attributed to the irreversible desorption of HOCs from soil particles. The average relative fractions of bioaccumulated isotope-labeled HOCs in the soil treated with 1 % microplastics ranged from 6.9 % to 46.4 %, which were higher than those in the soil treated with 0.1 % microplastics. Treatments with the smallest microplastic particles were observed to have the highest relative fractions of bioaccumulated isotope-labeled HOCs, with the exception of phenanthrene, suggesting greater vector effects of smaller microplastic particles. Biodynamic model analysis indicated that the contribution of dermal uptake to the bioaccumulation of isotope-labeled HOCs was higher than that for unlabeled HOCs. This proposed method can be used as a tool to assess the prospective vector effects of microplastics in complex environmental conditions and would enhance the comprehensive understanding of the microplastic vector effects for HOC bioaccumulation.


Asunto(s)
Bioacumulación , Interacciones Hidrofóbicas e Hidrofílicas , Microplásticos , Oligoquetos , Contaminantes del Suelo , Oligoquetos/metabolismo , Animales , Contaminantes del Suelo/metabolismo , Suelo/química
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365242

RESUMEN

An estimated 258 million tons of plastic enter the soil annually. Joining persistent types of microplastic (MP), there will be an increasing demand for biodegradable plastics. There are still many unknowns about plastic pollution by either type, and one large gap is the fate and composition of dissolved organic matter (DOM) released from MPs as well as how they interact with soil microbiomes in agricultural systems. In this study, polyethylene MPs, photoaged to different degrees, and virgin polylactic acid MPs were added to agricultural soil at different levels and incubated for 100 days to address this knowledge gap. We find that, upon MP addition, labile components of low aromaticity were degraded and transformed, resulting in increased aromaticity and oxidation degree, reduced molecular diversity, and changed nitrogen and sulfur contents of soil DOM. Terephthalate, acetate, oxalate, and L-lactate in DOM released by polylactic acid MPs and 4-nitrophenol, propanoate, and nitrate in DOM released by polyethylene MPs were the major molecules available to the soil microbiomes. The bacteria involved in the metabolism of DOM released by MPs are mainly concentrated in Proteobacteria, Actinobacteriota, and Bacteroidota, and fungi are mainly in Ascomycota and Basidiomycota. Our study provides an in-depth understanding of the microbial transformation of DOM released by MPs and its effects of DOM evolution in agricultural soils.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Microplásticos , Plásticos , Polietileno
3.
Water Res ; 251: 121173, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281334

RESUMEN

Particulate organic matter (POM), as an important component of organic matter, can act as a redox mediator and thus intervene in the environmental behavior of microplastics (MPs). However, quantitative information on the role of POM in the photoaging of MPs under ultraviolet (UV) light is still lacking. To raise the knowledge gap, through environmental simulation experiments and qualitative/quantitative experiments of active substances, we found that POM from peat soil has stronger oxidation capacity than POM from sediment, and the involvement of POM at high water content makes the aging of MPs more obvious. This is because the persistent radicals and electron-absorbing groups on the surface of POM indirectly generate reactive oxygen species (ROS) by promoting electron transfer, and the dissolved organic matter (DOM) released from POM under UV light (POM-DOM) is further excited to generate triplet-state photochemistry of DOM (3DOM*) to promote the aging of MPs. Theoretical calculations revealed that the benzene ring, mainly C = C, and C = O in the main chain in the plastic macromolecule structure are more susceptible to ROS attack, and the differences in the vulnerable sites contained in different plastic structures as well as the differences in the energy band gaps lead to differences in their aging processes. This study firstly elucidates the key role and intrinsic mechanism of POM in the photoaging of MPs, providing a theoretical basis for a comprehensive assessment of the effect of POM on MPs in the environment.


Asunto(s)
Material Particulado , Envejecimiento de la Piel , Material Particulado/análisis , Microplásticos , Plásticos , Especies Reactivas de Oxígeno , Suelo
4.
J Hazard Mater ; 466: 133605, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38286052

RESUMEN

While land-based sources have been recognized as significant long-term sinks for micro- and nanoplastics, there is limited knowledge about the uptake, translocation, and phytotoxicity of nanoplastics (NPs) in terrestrial environments, especially aged NPs. In this study, we investigated the impact of aged polystyrene nanoplastics (PSNPs) on the uptake, physiology, and metabolism of spinach. Our findings revealed that both pristine and aged PSNPs can accumulate in the roots and subsequently translocate to the aboveground tissues, thereby influencing numerous key growth indicators in spinach plants. A more pronounced impact was observed in the treatment of aged PSNPs, triggering more significant and extensive changes in metabolite levels. Furthermore, alterations in targeted pathways, specifically aminoacyl-tRNA biosynthesis and phenylpropanoid biosynthesis, were induced by aged PSNPs, while pristine PSNPs influenced pathways related to sulfur metabolism, biosynthesis of unsaturated fatty acids, and tryptophan metabolism. Additionally, tissue-specific responses were observed at the metabolomics level in both roots and leaves. These results highlight the existence of diverse and tissue-specific metabolic responses in spinach plants exposed to pristine and aged PSNPs, providing insights into the mechanisms of defense and detoxification against NP-induced stress.


Asunto(s)
Microplásticos , Poliestirenos , Microplásticos/toxicidad , Poliestirenos/toxicidad , Spinacia oleracea , Metabolómica , Transporte Biológico
5.
Sci Total Environ ; 915: 169978, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38215836

RESUMEN

As an emerging environmental pollutant, microplastics (MPs) have received widespread attention. Recently, studies examining microplastic pollution in plateau lakes have been increasing, but few have examined the distributions, sources, and fates of MPs in different plateau areas. In this work, the abundances and characteristics of MPs in surface waters and sediments in lakes of the Qinghai-Tibet Plateau (QTP) and Yunnan-Guizhou Plateau (YGP) were systematically investigated. The abundances of MPs in the lakes of the QTP ranges within 0.05-1.8 n/L in surface waters and 10-2643.7 n/kg in sediments. In the lakes of the YGP, the abundances of MPs ranged within 1.3-10.1 n/L in surface waters and 171.7-4260 n/kg in sediments. The dominant shape, color, and size class of MPs were fiber, transparent, and 0-0.5 mm in plateau lakes, respectively. MPs were mainly composed of polypropylene, polyethylene, and polyethylene terephthalate polymers. The different sources of MPs in the QTP and YGP lakes were mainly due to differences in human activities. The primary sources of microplastic pollution in the lakes of the QTP were tourism and atmospheric transport, while sewage discharge, agriculture, and fishing activities were the main sources of MPs in urban lakes of the YGP. Although the level of microplastic pollution in plateau lakes was relatively low, the sources should be identified and monitored so that the effects and extent of microplastic pollution in these fragile environments can be fully understood. This study provides a valuable dataset and theoretical basis for subsequent research on microplastic pollution in plateau lakes.

6.
Chemosphere ; 349: 140736, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995976

RESUMEN

During the years, adsorption has garnered considerable attention being one of the most cost-effective and efficient methods for separating contaminants out of liquid phase. A comprehensive understanding of adsorption mechanisms entails several crucial steps, including adsorbent characterization, batch and column adsorption tests, fitting of predefined kinetic and isotherm models, and meticulous thermodynamic analysis. These combined efforts serve to provide clarity and insights into the intricate workings of adsorption phenomena. However, the vast amount of literature published in the field each year is riddled with ill-considered model selections and incorrect parameter analyses. Therefore, the aim of this paper is to establish guidelines for the proper employment of these numerous kinetic, isotherm, and fixed-bed models in various applications. A thorough review has been undertaken, encompassing more than 45 kinetic models, 70 isotherm models, and 45 fixed bed models available hitherto, with their classification determined based on the adsorption mechanisms expounded within each of them. Moreover, five general approaches for modifying fixed-bed models were provided. The physical meanings, assumptions, and interconversion relationships of the models were discussed in detail, along with the information criterion used to evaluate their validity. In addition to commonly used activation energy and Gibbs energy analysis, the methods for calculating site energy distribution were also summarized.


Asunto(s)
Física , Contaminantes Químicos del Agua , Adsorción , Termodinámica , Cinética , Concentración de Iones de Hidrógeno
7.
J Hazard Mater ; 462: 132710, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832437

RESUMEN

Microplastics (MPs) exists widely in the environment, and the resulting pollution of MPs has become a global environmental problem. Plants can absorb MPs through their roots. However, studies on the mechanism of the effect of root exposure to different size MPs on vegetables are limited. Here, we use Polystyrene (PS) MPs with different particle sizes to investigate the internalization, physiological response and molecular mechanism of lettuce to MPs. MPs may accumulate in large amounts in lettuce roots and migrate to the aboveground part through the vascular bundle, while small particle size MPs (SMPs, 100 nm) have stronger translocation ability than large particle size MPs (LMPs, 500 nm). MPs can cause physiological and biochemical responses and transcriptome changes in lettuce. SMPs and LMPs resulted in reduced biomass (38.27 % and 48.22 % reduction in fresh weight); caused oxidative stress (59.33 % and 47.74 % upregulation of SOD activity in roots) and differential gene expression (605 and 907 DEGs). Signal transduction, membrane transport and alteration of synthetic and metabolic pathways may be the main causes of physiological toxicity of lettuce. Our study provides important information for understanding the behavior and fate of MPs in edible vegetables, especially the physiological toxicity of MPs to edible vegetables, in order to assess the potential threat of MPs to food safety and agricultural sustainable development.


Asunto(s)
Microplásticos , Poliestirenos , Poliestirenos/toxicidad , Microplásticos/toxicidad , Plásticos/toxicidad , Lactuca , Estrés Oxidativo , Verduras
8.
Sci Total Environ ; 913: 169427, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135066

RESUMEN

Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.

9.
J Hazard Mater ; 465: 133336, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142654

RESUMEN

Microplastics (MPs) are ubiquitous contaminants that have become an emerging pollutant of concern, potentially threatening human health and ecosystem environments. Although current detection methods can accurately identify various types of MPs, it remains necessary to develop non-destructive and rapid methods to meet growing demands for detection. Herein, we combine a hyperspectral unmixing method and machine learning to analyse Raman imaging data of environmental MPs. Five MPs types including poly(butylene adipate-co-terephthalate) (PBAT), poly(butylene succinate) (PBS), p-polyethylene (PE), polystyrene (PS) and polypropylene (PP) were visualized and identified. Individual or mixed pure or aged MPs along with environmental samples were analysed by Raman imaging. Alternating volume maximization (AVmax) combined with unconstrained least squares (UCLS) method estimated end members and abundance maps of each of the MPs in the samples. Pearson correlation coefficients (r) were used as the evaluation index; the results showed that there is a high similarity between the raw spectra and the average spectra calculated by AVmax. This indicates that Raman imaging based on machine learning and hyperspectral unmixing is a novel imaging analysis method that can directly identify and visualize MPs in the environment.

10.
Sci Total Environ ; 904: 166473, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659565

RESUMEN

In this study, a combination of property analysis and high-throughput sequencing was used to investigate the microbial colonization ability and their community structures and functions in polypropylene microplastics (PPMPs), polystyrene microplastics (PSMPs) and montmorillonite (MMT), respectively as the representatives of artificial and natural substrates in aerobic sludge treatment. After 45 d of incubation, the surface properties of substrates were altered with the increased oxygen functional groups and surface roughness, indicating microbial settlement. Moreover, MPs had different microbial structures from that of MMT, and PSMPs exhibited higher microbial diversity and abundance than PPMPs and MMT. Also, these substrates changed the inherent ecological niche in sludge. Especially, the abundance of some pathogens (e.g., Pseudomonas, Klebsiella and Flavobacterium) was increased in MPs, and the disease risk of Kyoto Encyclopedia of Genes and Genomes metabolic pathway (e.g., Infectious diseases: Bacterial, Infectious diseases: Parasitic and Immune diseases) was higher. Also, the presence of MPs inhibited the decomposition of organic matter including soluble chemical oxygen demand and protein compared to natural substrates. The findings revealed the crucial vector role of MPs for microbes and the effect on aerobic sludge treatment, highlighting the necessity of MP removal in sludge.


Asunto(s)
Enfermedades Transmisibles , Microplásticos , Humanos , Plásticos , Aguas del Alcantarillado , Arcilla , Polipropilenos , Poliestirenos
11.
Sci Total Environ ; 902: 166189, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567305

RESUMEN

The impact of microplastics (MPs) on soil ecosystems has attracted widespread attention; however, the effects of soil structure and texture on the occurrence of MPs are not fully understood. In this study, we investigated the effects of soil structure and texture on the abundance of MPs and their potential mechanisms in agricultural soils of karst areas in Guizhou, China. The results showed the average abundance of MPs was 2948 items/kg. The soil texture in the study area can be categorized into seven types such as powdered-light clay, the range of total soil porosity was 39.05-69.22 % and the range of soil bulk density was 0.66-1.51 g/cm3. Soils with a powdered-light clay, low soil porosity, and low soil bulk density showed higher MPs pollution. The percentage of pellet MPs in agricultural soils with a powdered-light clay was 84 %, which was higher than that of the other soil textures. The direct effects of soil texture, soil porosity, and soil bulk density on MPs abundance were much lower than the indirect effects, with soil texture having the highest effect on MPs abundance. We speculated that karst geology may affect the accumulation and distribution of MPs in soil by affecting soil texture and structure, which, in turn, affects the fragmentation and migration of MPs. These findings will help to better understand the mechanisms of soil MPs pollution and provide a scientific basis for the development of relevant control strategies.

12.
J Hazard Mater ; 460: 132350, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619279

RESUMEN

Microplastics (MPs) in the environment are always colonized by microbes, which may have implications for carrying effect of pollutants and exposure risk in organisms. We present the crucial impacts and mechanisms of microbial colonization on the bioaccessibility and toxicity of Pb(II) loaded in disposable box-derived polypropylene (PP) and polystyrene (PS) MPs and montmorillonite (MMT) clay particles. After 45 d incubation, higher biomass measured by crystal violet staining were detected in MMT (1.23) than in PP and PS (0.400 and 0.721) indicating preferential colonization of microbes in clay particles. Microbial colonization further enhanced the sorption ability toward Pb(II), but inhibited the desorption and bioaccessibility of enriched Pb(II) in zebrafish and decreased the toxicity to gastric epithelial cells in an order of MMT > PS ≈ PP. The crucial effects were mainly because microbe-colonized substrates possessed higher oxygen functional groups and specific surface area and exhibited stronger interactions with Pb(II) and digestive component (i.e., pepsin) than pure substrates. This decreased the available soluble pepsin for complexing with sorbed Pb(II). The findings highlight the role of microbial colonization in modulating the exposure risks of artificial and natural substrate-associated pollutants and suggest that the risks of MPs may be overestimated compared to clay particles.


Asunto(s)
Bentonita , Contaminantes Ambientales , Animales , Bentonita/toxicidad , Arcilla , Plomo/toxicidad , Microplásticos/toxicidad , Pepsina A , Plásticos , Pez Cebra , Polipropilenos , Poliestirenos/toxicidad
13.
Sci Total Environ ; 904: 166350, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591376

RESUMEN

The pollution caused by microplastics (MPs), an emerging pollutant, has been receiving continuous concern. However, the distribution characteristics of MPs in ecologically fragile areas (EFAs), which are sensitive to environmental change and pollution, are still unclear. Here, the abundance and pollution characteristics of MPs in agricultural soils in four typical EFAs in China, namely semiarid farming-pastoral area (SFPA), desert-oasis interlaced area (DOIA), plateau composite erosion area (PCEA) and southwest karst area (SWKA) were investigated. MPs were detected in all agricultural soil samples with a mean abundance of 2685 ± 938 n/kg. DOIA (3193 ± 630 n/kg) had the largest abundance of MPs in agricultural soils, followed by SWKA (2948 ± 819 n/kg), SFPA (2920 ± 935 n/kg), and PCEA (1680 ± 320 n/kg). MPs in four EFAs were mostly small size (0-0.49 mm), accounted for 81.71 %. Fragmented and pelleted MPs were the main shapes, occupying for 51.26 % and 28.53 %, respectively. In addition, Fourier transform infrared (FTIR) was applied to determine the polymer types of MPs and to assess the pollution risk of MPs, which ranged from 157 to 938, indicating a moderate to high risk. The results revealed that EFAs located in remote inland areas were considerably polluted by MPs, close to the developed coastal areas. This study provided systematic data on MPs pollution of EFAs, which is crucial in preventing further environmental degradation and promoting ecological restoration.

14.
J Hazard Mater ; 459: 132154, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37517239

RESUMEN

Microplastics (MPs) are widely detected in wastewater treatment plants (WWTPs) and natural environment, while the relationship of MPs pollution in both media is not fully understood. In this study, the occurrence of MPs in WWTPs and in surface water and soil was investigated, and their relationship was critically formulated. Results showed although wastewater treatment could effectively remove MPs (58.2%), the effluent was still the important source of MPs in the river, while sludge was not as important as the effluent of MPs in the soil. Specifically, the dominant size ranges of MPs were 0-200 µm, with main type of PE in all wastewater, sludge, river and soil. The dominant shape of MPs in wastewater and river was film. However, the shapes were different between sludge (52.1% of fibers) and soil (40.6% of fragment). Overall, WWTP input and surface runoff were the main source of MPs pollution in surface water, and the abrasion of agricultural films accounted for the MPs pollution in soil. The findings revealed the distribution and interconnection of MPs in WWTPs and environmental media, which could help to trace the sources of MPs pollution and assess the ecological risks in the environment.

15.
J Hazard Mater ; 452: 131321, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003000

RESUMEN

A large number of surgical masks (SMs) to be discarded indiscriminately during the spread of COVID-19. The relationship between the changes of masks entering the environment and the succession of the microorganisms on them is not yet clear. The natural aging process of SMs in different environments (water, soil, and atmosphere) was simulated, the changes and succession of the microbial community on SMs with aging time were explored. The results showed that the SMs in water environment had the highest aging degree, followed by atmospheric environment, and SMs in soil had the lowest aging degree. The results of high-throughput sequencing demonstrated the load capacity of SMs for microorganisms, showed the important role of environment in determining microbial species on SMs. According to the relative abundance of microorganisms, it is found that compared with the water environment, the microbial community on SMs in water is dominated by rare species. While in soil, in addition to rare species, there are a lot of swinging strains on the SMs. Uncovering the ageing of SMs in the environment and its association with the colonization of microorganisms will help us understand the potential of microorganisms, especially pathogenic bacteria, to survive and migrate on SMs.


Asunto(s)
COVID-19 , Suelo , Humanos , Suelo/química , Máscaras , Agua , COVID-19/prevención & control , Atmósfera , Plásticos
16.
Sci Total Environ ; 881: 163398, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37061062

RESUMEN

Understanding the environmental correlation of microbial community under external stimulation is significant for ecological restoration. However, few studies focused on the response of soil biodiversity induced by black carbon (BC) derived from pyrolysis of straw and microplastics (MPs) due to their widespread existence in natural environment. In this study, polystyrene MPs (PS) and maize straw with different mass ratios were used as raw materials to prepare BC by pyrolysis. The surface morphology, chemical composition and sequential variations of different functional groups of BC were systematically analyzed. The leachate from BC was identified by three-dimensional excitation emission matrice (3D-EEM). The corresponding results showed that yield, value of O/C and N element content of BC decreased with more PS. The changed C content and oxygen-containing functional groups occurred. The order of functional groups of BC formed by co-pyrolysis was: C=C > C-O > C-H > Si-O-Si. The main component of leaching from BC was humic-like and fulvic-like acid. Simultaneously, the input of exogenous BC into soil affected abundance, composition and metabolic pathways of microorganisms. The study helps to understand environmental implication of BC which was pyrolyzed from maize straw and MPs, providing an idea for improving biogeochemical cycle process in soil.


Asunto(s)
Microbiota , Suelo , Suelo/química , Carbón Orgánico/química , Carbono/química , Zea mays , Microplásticos , Plásticos , Poliestirenos , Pirólisis
17.
J Hazard Mater ; 445: 130564, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055972

RESUMEN

Dissolved organic matter (DOM) leaching from biodegradable microplastics (BMPs) and its characteristics and corresponding environmental implication are rarely investigated. In this study, the main component of DOM leachate from the two BMPs (polyadipate/butylene terephthalate (PBAT)/polycaprolactone (PCL)) was verified by using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The PBAT-DOM (PBOM) was aromatized and terrestrial. Comparatively, PCL-DOM (PLOM) had low molecular weight. PBOM contained protein-like components while PLOM contained tryptophan and tyrosine components. Interestingly, both PBOM and PLOM could accelerate the decomposition and oxidation of coexisting polystyrene (PS) under light irradiation. Further, the difference in composition and the properties of BMPs-DOM significantly affected its photochemical activity. The high territoriality and protein-like component of PBOM significantly promoted the generation of 1O2 and O2•-, which caused faster disruptions to the backbone of PS. Simultaneously, the microbial community's richness, diversity, and metabolism were obviously improved under the combined pressure of aged PS and BMPs-DOM. This study threw light on the overlooked contribution of DOM derived from BMPs in the aging process of NMPs and their impact on the microbial community and provided a promising strategy for better understanding of combined MPs' fate and environmental risk.


Asunto(s)
Plásticos , Envejecimiento de la Piel , Microplásticos , Materia Orgánica Disuelta , Espectrometría de Fluorescencia , Análisis Factorial , Sustancias Húmicas
18.
J Hazard Mater ; 451: 131123, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871465

RESUMEN

The aging of microplastics (MPs) occurs extensively in the environment, and understanding the aging mechanisms of MPs is essential to study the properties, fate and environmental impact of MPs. We proposed a creative hypothesis that polyethylene terephthalate (PET) can be aged by reducing reactions with reducing agents. Simulation experiments based on the principle of reduction of carbonyl by NaBH4 were conducted to test the correctness of this hypothesis. The results showed that after 7 days of experiments, physical damage and chemical transformation occurred in the PET-MPs. The particle size of MPs was reduced by 34.95-55.93 %, and the C/O ratio was increased by 2.97-24.14 %. The changing order of surface functional groups (CO > C-O > C-H > C-C) was obtained. The occurrence of reductive aging and electron transfer of MPs was further supported by electrochemical characterization experiments. These results together reveal the reductive aging mechanism of PET-MPs: CO is firstly reduced to C-O by BH4- attack, and then further reduced to ·R. The resulting ·R recombines to form new C-H and C-C. This study is beneficial to deepen the understanding of the chemical aging of MPs, and can provide a theoretical basis for further research on the reactivity of oxygenated MPs with reducing agents.

19.
J Hazard Mater ; 448: 130954, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860041

RESUMEN

Bio-based aerogel has become an attractive sorbent for spilled oil and organic pollutants because of its light weight, high porosity and strong sorption capacity. However, the current fabrication process is mainly "bottom-up" technology, which is cost-expensive, time-consuming, and energy-intensive. Herein, we report a top-down, green, efficient and selective sorbent prepared from corn stalk pith (CSP) using the deep eutectic solvent (DES) treatment, followed by TEMPO/NaClO/NaClO2 oxidization and microfibrillation, and then hexamethyldisilazane coating. Such chemical treatments selectively removed lignin and hemicellulose, broke the thin cell walls of natural CSP, forming an aligned porous structure with capillary channels. The resultant aerogels had a density of 29.3 mg/g, a porosity of 98.13%, and a water contact angle of 130.5◦, exhibiting excellent oil/organic solvents sorption performance, with a high sorption capacity in the range of 25.4-36.5 g/g, approximately 5-16-fold higher than CSP, and with fast absorption speed and good reusability.

20.
Environ Sci Technol ; 57(14): 5714-5725, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995247

RESUMEN

Tire wear particles (TWPs) exposed to the aquatic environment are rapidly colonized by microorganisms and provide unique substrates for biofilm formation, which potentially serve as vectors for tetracycline (TC) to influence their behaviors and potential risks. To date, the photodegradation capacity of TWPs on contaminants due to biofilm formation has not been quantified. To accomplish this, we examined the ability of virgin TWPs (V-TWPs) and biofilm-developed TWPs (Bio-TWPs) to photodegrade TC when exposed to simulated sunlight irradiation. V-TWPs and Bio-TWPs accelerated the photodegradation of TC, with rates (kobs) of 0.0232 ± 0.0014 and 0.0152 ± 0.0010 h-1, respectively (kobs increased by 2.5-3.7 times compared to that for only TC solution). An important factor of increased TC photodegradation behavior was identified and linked to the changed reactive oxygen species (ROS) of different TWPs. The V-TWPs were exposed to light for 48 h, resulting in more ROS for attacking TC, with hydroxyl radicals (•OH) and superoxide anions (O2•-) playing a dominant role in TC photodegradation measured using scavenger/probe chemicals. This was primarily due to the greater photosensitization effects and higher electron-transfer capacity of V-TWPs in comparison to Bio-TWPs. In addition, this study first sheds light on the unique effect and intrinsic mechanism of the crucial role of Bio-TWPs in TC photodegradation, enhancing our holistic understanding of the environmental behavior of TWPs and the associated contaminants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Fotólisis , Plásticos , Especies Reactivas de Oxígeno/química , Antibacterianos , Tetraciclina , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA