Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 505, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778258

RESUMEN

BACKGROUND: In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS: Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION: The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.


Asunto(s)
Gansos , Perfilación de la Expresión Génica , Melaninas , Pigmentación , Caracteres Sexuales , Animales , Femenino , Masculino , Gansos/genética , Gansos/metabolismo , Melaninas/metabolismo , Pigmentación/genética , Plumas/metabolismo , Plumas/crecimiento & desarrollo , Transcriptoma
2.
Poult Sci ; 103(7): 103794, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38718539

RESUMEN

Avian feather color is a fascinating trait, and the genetic mechanism of duck plumage formation is still in the preliminary stage. In this study, feather color of Liancheng White ducks was analyzed by determination of melanin content and RNA-seq analysis. In this research, 9 ducks from Mallards (n = 3), Liancheng White (n = 3) and Pekin ducks (n = 3) were used by high performance liquid chromatography (HPLC) and Masson-Fontana staining to reveal the difference of feather melanin content. RNA-seq from 11 hair follicle tissues (1- and 8-wk-old) of Liancheng White ducks (n = 5) and Pekin ducks (n = 7) was used to analyze the candidate genes for the feather melanin synthesis, and Immunofluorescence experiment was used to show the protein expression in 6 black- and white-feathered ducks. Pectorale, skin, liver, fat, brain, heart, kidney, lung, spleen of an 8-wk-old black-feathered Mallard were collected for candidate gene expression. The results showed that the contents of feathers, beak, web melanin in Liancheng White ducks were higher than in Pekin ducks (p < 0.05). Melanin within hair follicles was located in the barb ridge and hair matrix of black feather duck, also we found that TYRP1, TYR, SOX10 genes were differentially expressed between Liancheng White and Pekin ducks (p < 0.05), and these genes were mainly expressed showed in duck skin tissues. This study revealed the unique feather color phenotype of Liancheng White duck shedding light on the transcriptome that underlies it.

3.
BMC Genomics ; 25(1): 429, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689208

RESUMEN

BACKGROUND: Expression quantitative trait loci (eQTL) studies aim to understand the influence of genetic variants on gene expression. The colocalization of eQTL mapping and GWAS strategy could help identify essential candidate genes and causal DNA variants vital to complex traits in human and many farm animals. However, eQTL mapping has not been conducted in ducks. It is desirable to know whether eQTLs within GWAS signals contributed to duck economic traits. RESULTS: In this study, we conducted an eQTL analysis using publicly available RNA sequencing data from 820 samples, focusing on liver, muscle, blood, adipose, ovary, spleen, and lung tissues. We identified 113,374 cis-eQTLs for 12,266 genes, a substantial fraction 39.1% of which were discovered in at least two tissues. The cis-eQTLs of blood were less conserved across tissues, while cis-eQTLs from any tissue exhibit a strong sharing pattern to liver tissue. Colocalization between cis-eQTLs and genome-wide association studies (GWAS) of 50 traits uncovered new associations between gene expression and potential loci influencing growth and carcass traits. SRSF4, GSS, and IGF2BP1 in liver, NDUFC2 in muscle, ELF3 in adipose, and RUNDC1 in blood could serve as the candidate genes for duck growth and carcass traits. CONCLUSIONS: Our findings highlight substantial differences in genetic regulation of gene expression across duck primary tissues, shedding light on potential mechanisms through which candidate genes may impact growth and carcass traits. Furthermore, this availability of eQTL data offers a valuable resource for deciphering further genetic association signals that may arise from ongoing extensive endeavors aimed at enhancing duck production traits.


Asunto(s)
Patos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Patos/genética , Patos/crecimiento & desarrollo , Patos/metabolismo , Fenotipo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple
4.
Evol Appl ; 17(2): e13638, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333555

RESUMEN

Genomic selection (GS) has great potential to increase genetic gain in poultry breeding. However, the performance of genomic prediction in duck growth and breast morphological (BM) traits remains largely unknown. The objective of this study was to evaluate the benefits of genomic prediction for duck growth and BM traits using methods such as GBLUP, single-step GBLUP, Bayesian models, and different marker densities. This study collected phenotypic data for 14 growth and BM traits in a crossbreed population of 1893 Pekin duck × mallard, which included 941 genotyped ducks. The estimation of genetic parameters indicated high heritabilities for body weight (0.54-0.72), whereas moderate-to-high heritabilities for average daily gain (0.21-0.57) traits. The heritabilities of BM traits ranged from low to moderate (0.18-0.39). The prediction ability of GS on growth and BM traits increased by 7.6% on average compared to the pedigree-based BLUP method. The single-step GBLUP outperformed GBLUP in most traits with an average of 0.3% higher reliability in our study. Most of the Bayesian models had better performance on predictive reliability, except for BayesR. BayesN emerged as the top-performing model for genomic prediction of both growth and BM traits, exhibiting an average increase in reliability of 3.0% compared to GBLUP. The permutation studies revealed that 50 K markers had achieved ideal prediction reliability, while 3 K markers still achieved 90.8% predictive capability would further reduce the cost for duck growth and BM traits. This study provides promising evidence for the application of GS in improving duck growth and BM traits. Our findings offer some useful strategies for optimizing the predictive ability of GS in growth and BM traits and provide theoretical foundations for designing a low-density panel in ducks.

5.
Comput Struct Biotechnol J ; 23: 771-782, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38304549

RESUMEN

Duck hepatitis A virus genotype 3 (DHAV-3) is the major cause of viral hepatitis in ducks in Asia. Previous studies have shown that ducklings younger than 21 days are more susceptible to DHAV-3. To elucidate the mechanism by which age affects the differential susceptibility of Pekin ducks to DHAV-3, intestinal (n = 520), liver (n = 40) and blood (n = 260) samples were collected from control and DHAV-3-infected ducks at 7, 10, 14, and 21 days of age. Comparisons of plasma markers, mortality rates, and intestinal histopathological data showed that the resistance of Pekin ducks to DHAV-3 varied with age. 16 S sequencing revealed that the ileal microbial composition was influenced by age, and this correlation was greater than that recorded for caecal microbes. Candidatus Arthromitus, Bacteroides, Corynebacterium, Enterococcus, Romboutsia, and Streptococcus were the differntially abundant microbes in the ileum at the genus level after DHAV-3 infection and were significantly correlated with 7 differentially expressed genes (DEGs) in 7- and 21-day-old ducklings. 3 immunity-related pathways were significantly different between 7- and 21-day-old ducklings, especially for IFIH1-mediated induction of the interferon-alpha/beta pathway, which induces differential production of CD8(+) T cells and was influenced by a combination of differentially abundant microbiota and DEGs. We found that microbes in the ileum changed regularly with age. The intestinal microbiota was associated with the expression of genes in the liver through IFIH1-mediated induction of the interferon-alpha/beta pathway, which may partially explain why younger ducklings were more susceptible to DHAV-3 infection.

6.
Food Chem X ; 19: 100799, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780288

RESUMEN

Our objective was to determine effects of supplemental dietary riboflavin on meat quality, antioxidant capacity, fatty acid composition, lipidomic, volatilomic, and proteomic profiling of duck breast muscle. The results showed that dietary riboflavin supplementation significantly increased growth performance, breast meat yield, intramuscular fat content, polyunsaturated fatty acid (PUFA), n3-PUFA, n6-PUFA, redness (a*), and pH24h, but decreased lightness (L*) and yellowness (b*). Furthermore, riboflavin supplementation significantly improved muscle antioxidant capacity based on various biochemical parameters. Lipidomic and volatilomic analyses revealed that riboflavin supplementation markedly increased breast meat phosphatidylglycerol and coenzyme Q contents and two favourable key odorants, citronellyl acetate and 3-(methylthio)-propanal. Proteomics analyses confirmed that riboflavin supplementation activated mitochondrial aerobic respiration, including fatty acid beta oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. In conclusion, supplementing duck diets with riboflavin enhanced breast meat quality, attributed to increases in antioxidant capacity and mitochondrial functions.

7.
J Anim Sci Biotechnol ; 14(1): 74, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147656

RESUMEN

BACKGROUND: Carcass traits are crucial for broiler ducks, but carcass traits can only be measured postmortem. Genomic selection (GS) is an effective approach in animal breeding to improve selection and reduce costs. However, the performance of genomic prediction in duck carcass traits remains largely unknown. RESULTS: In this study, we estimated the genetic parameters, performed GS using different models and marker densities, and compared the estimation performance between GS and conventional BLUP on 35 carcass traits in an F2 population of ducks. Most of the cut weight traits and intestine length traits were estimated to be high and moderate heritabilities, respectively, while the heritabilities of percentage slaughter traits were dynamic. The reliability of genome prediction using GBLUP increased by an average of 0.06 compared to the conventional BLUP method. The Permutation studies revealed that 50K markers had achieved ideal prediction reliability, while 3K markers still achieved 90.7% predictive capability would further reduce the cost for duck carcass traits. The genomic relationship matrix normalized by our true variance method instead of the widely used [Formula: see text] could achieve an increase in prediction reliability in most traits. We detected most of the bayesian models had a better performance, especially for BayesN. Compared to GBLUP, BayesN can further improve the predictive reliability with an average of 0.06 for duck carcass traits. CONCLUSION: This study demonstrates genomic selection for duck carcass traits is promising. The genomic prediction can be further improved by modifying the genomic relationship matrix using our proposed true variance method and several Bayesian models. Permutation study provides a theoretical basis for the fact that low-density arrays can be used to reduce genotype costs in duck genome selection.

8.
Adv Sci (Weinh) ; 10(18): e2300148, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37013465

RESUMEN

Meat is among the most consumed foods worldwide and has a unique flavor and high nutrient density in the human diet. However, the genetic and biochemical bases of meat nutrition and flavor are poorly understood. Here, 3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled from a gradient consanguinity segregating population generated by Pekin duck × Liancheng duck crosses using metabolomic approaches. The authors identified 2862 metabolome-based genome-wide association studies (mGWAS) signals and 48 candidate genes potentially modulating metabolite and volatile levels, 79.2% of which are regulated by cis-regulatory elements. The level of plasmalogen is significantly associated with TMEM189 encoding plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1 and ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine the levels of 49 metabolites including L-carnosine and anserine. This study provides novel insights into the genetic and biochemical basis of skeletal muscle metabolism and constitutes a valuable resource for the precise improvement of meat nutrition and flavor.


Asunto(s)
Carboxiliasas , Estudio de Asociación del Genoma Completo , Animales , Humanos , Patos/genética , Patos/metabolismo , Carne/análisis , Metaboloma/genética , Músculo Esquelético , Carboxiliasas/metabolismo
9.
Mol Ecol ; 32(12): 3076-3088, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36929535

RESUMEN

Birds are among the most colourful terrestrial vertebrates, with various plumage colours and patterns. We conducted a genome-wide association study (GWAS) on an intercross F2 population of Pekin ducks and mallards (n = 722) and identified a 1.57-Mb genetic region (Chr11: 20,176,480-21,750,101 bp) related to duck melanism. Fine mapping by linkage disequilibrium (LD) and FST analysis narrowed the final candidate region to a region of 22,500 bp (Chr11: 20,677,500-20,700,000 bp) including three coding genes, TCF25, MC1R and TUBB3. Combined with transcriptome and qRT-PCR analysis, MC1R was identified as the unique genetic locus responsible for black plumage in ducks, and it was significantly more highly expressed in the feather bulbs of black ducks. We also identified 52G > A (Chr11: 20,696,354G > A) and 376G > A (Chr11: 20,696,678G > A) mutations in the MC1R coding region that have been widely studied in ducks. In addition, structural variations (SVs) were screened by nanopore sequencing, and no significant SV was found to be associated with the duck black plumage trait. However, we identified four novel single nucleotide polymorphisms in the MC1R regulator region (Chr11: 20,678,412G > A, Chr11: 20,679,236G > A, Chr11: 20,692,496 A > G and Chr11: 20,692,791 A > G) that had a strong association with the black plumage phenotype of ducks and combined with potential changes in transcription binding affinities. The luciferase reporter gene assay demonstrated that Chr11: 20,678,412G > A and Chr11: 20,679,236G > A led to significant promoter activity changes. Our research emphasizes the importance of MC1R regulatory region mutation in determining the duck black plumage phenotype, and these results expand our understanding of the genetic mechanism underlying duck plumage colour.


Asunto(s)
Patos , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 1 , Animales , Patos/genética , Plumas , Estudio de Asociación del Genoma Completo , Mutación , Pigmentación/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas
10.
Poult Sci ; 102(4): 102392, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745957

RESUMEN

Duck virus enteritis (DVE), caused by the DVE virus (DVEV), is an acute, septicemic, and contagious disease affecting ducks of different breeds, ages, and sexes. In late spring and summer 2019, several outbreaks of DVE were reported in areas with large waterfowl industries in central and southern China. A goose farm located in Jining County, Shandong Province, was impacted by an acute DVE outbreak in July 2019. The causative DVEV field strain (Goose/DVEV/SDJN/China/2019) was subsequently isolated from the liver specimens collected from acute cases of dead geese, which showed severe hemorrhagic lesions on the esophageal mucosal membranes of specimens collected from all the postmortem cases. Comparison of the genome sequence of this newly isolated field strain (Goose/DVEV/SDJN/China/2019) with the common DVEV strains revealed insertions or mutations in the gB and gC genes, which possibly caused the observed high morbidity and mortality in this acute outbreak. We conducted a trial among geese to evaluate the pathogenicity of this strain. Healthy experimental goslings aged 15 d old were inoculated with 10-5.53 ELD50/0.2 mL doses orally or through intramuscular injection. Clinical signs and esophageal erosion appeared in infected geese. Necropsy revealed hemorrhage and necrosis of the cloacal mucosa and liver. Detection of the virus using real-time PCR in the liver, brain, and spleen indicated that they were the hotspots of DVEV infections. One day after the DVEV infection, virus release and seroconvert were observed in infected geese. Thus, our studies demonstrate that DVEV is highly pathogenic and contagious in geese. To the best of our knowledge, this is the first study on the pathogenicity of mutant duck viral enteritis virus in goslings. This study serves as a foundation for further investigations into the pathophysiology of the recently identified variant DVEV strains.


Asunto(s)
Enteritis , Enfermedades de las Aves de Corral , Animales , Gansos , Virulencia , Esparcimiento de Virus , Pollos , Genómica , Enteritis/veterinaria , Patos , Filogenia
11.
Anim Genet ; 54(3): 363-374, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36697366

RESUMEN

The thickness of the perimysium has an essential effect on the tenderness of the meat. However, the genetic basis underlying perimysial thickness has not been determined. The objective of this study was to explore the quantitative trait loci (QTL) that influence perimysial thickness in an F2 segregating population generated by Mallard × Pekin duck using the genome-wide association study (GWAS) method. Two QTL identified in chromosomes 27 and 13 displayed significant associations with perimysial thickness traits at the genome-wide level. The strongest association was the QTL located in chromosome 27, and this region had an effect on perimysial thickness and contained a promising candidate gene MAGI3 (Membrane-associated guanylate kinase, WW and PDZ domain containing 3). Meanwhile, association analysis showed that the top SNP within the MAGI3 gene was also associated with intramuscular fat content traits, which showed that perimysial thickness was positively correlated with intramuscular fat content. The second strongest association was the QTL region of chromosome 13. SUCLG2 (Succinate-CoA ligase GDP-forming subunit beta) is proximal to the top SNP and stood out as another candidate gene. Furthermore, the Transposase-Accessible Chromatin using Sequencing result showed that some key transcription factors (MYF5, MYOD1, KLF11) related to muscle development or energy metabolism might bind to the open regions of MAGI3 and SUCLG2. By analyzing the expression of different genotypes of the candidate gene, we speculate that different genotypes of MAGI3 may have an effect on breast muscle development, and then affect the thickness of the perimysium. This study maps two major genes of the duck breast muscle perimysial thickness trait, which helps to characterize muscle development and contributes to the genetic improvement of meat yield and quality in livestock.


Asunto(s)
Patos , Estudio de Asociación del Genoma Completo , Animales , Patos/genética , Sitios de Carácter Cuantitativo , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
12.
Anim Nutr ; 12: 215-226, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36712406

RESUMEN

This study was to determine the effects of riboflavin deficiency (RD) on intestinal development, jejunum mucosa proteome, cecal short-chain fatty acids (SCFA) profiling, and cecal microbial diversity and community of starter Pekin ducks. Male white Pekin ducks (1 d old, n = 240) were allocated into 2 groups, with 12 replicates and 10 birds per replicate in each group. For 21 d, all ducks had ad libitum access to either an RD or a riboflavin adequate (control, CON) diet, formulated by supplementing a basal diet with 0 or 10 mg riboflavin per kg of diet, respectively. Compared to the CON group, growth retardation, high mortality, and poor riboflavin status were observed in the RD group. Furthermore, RD reduced the villus height and the ratio of villus height to crypt depth of jejunum and ileum (P < 0.05), indicating morphological alterations of the small intestine. In addition, dietary RD enhanced relative cecum weight and decreased cecal SCFA concentrations (P < 0.05), including propionate, isobutyrate, butyrate, and isovalerate. The jejunum mucosa proteomics showed that 208 proteins were upregulated and 229 proteins were downregulated in the RD group compared to those in the CON group. Among these, RD mainly suppressed intestinal absorption and energy generation processes such as glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, leading to impaired ATP generation. In addition, RD decreased the community richness and diversity of the bacterial community in the cecum of ducks. Specifically, RD reduced the abundance of butyrate-producing bacteria in the cecum (P < 0.05), such as Eubacterium coprostanoligenes, Prevotella and Faecalibacterium. Dietary RD resulted in growth depression and intestinal hypofunction of Pekin ducks, which could be associated with impaired intestinal absorption and energy generation processes in intestinal mucosa, as well as gut microbiota dysbiosis. These findings contribute to our understanding of the mechanisms of intestinal hypofunction due to RD.

13.
Gene ; 848: 146864, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36067863

RESUMEN

Duck meat is starting to receive more attention due to its unique meaty characteristics. Pekin duck is an important breed resource of meat duck, which has been used in meat production and product research. However, the study about whole genome resequencing analysis of ducks for meat production has not been reported and the underlying mechanisms of meat production remain undefined. Here, lines with high lean meat percentage (S, n = 30) and low lean meat percentage (Z, n = 30) were used to analyze. The values of body weight, breast meat weight and leg meat weight in S line (body weight: 3,071 ± 26.83 g), breast meat: 391.3 ± 6.670 g; leg meat: 121.1 ± 2.184 g) were significantly higher than those in Z line (body weight: 2,584 ± 38.53 g, breast meat: 263.9 ± 6.984 g; leg meat: 110.1 ± 3.645 g). The values of body size in Z line (26.47 ± 0.1571 cm) were significantly higher than that in S line (25.38 ± 0.2475 cm). A total of 14,220,037 SNPs were obtained from 19 individuals by whole-genome resequencing, and the separate analyses of FST (range from 0.30 to 0.52) and log2θπ ratio (range from 5.8 to 8.1) revealed 50 and 124 candidate genes in the top 0.1% regions respectively, which involved in 209 and 298 candidate regions. The integration of two approaches resulted in 7 overlapping genes. Notably, AUTS2 gene is related to activator of developmental regulator. As expected, we found that in the chr29:2.29-2.30 Mb region of AUTS2, the FST value is 0.32, and the S line (π = 7.3 × 10 -5) shows a very low level of π value compared with Z line (π = 8.8 × 10 -3). Genotyping and GWAS analysis showed that 2 candidate SNPs (chr29:2,296,787 and chr29:2,296,832) were associated with high meat percentage, which were verified by Sanger sequencing. Taken together, lean meat percentage was much higher in S line individuals by comparing with Z line. The integration of FST and θπ resulted in only 7 overlapping genes that in the top 0.1% candidate regions of them. The chr29:2,296,787 and chr29:2,296,832 in the AUTS2 gene could be important molecular markers for high lean meat adaptation selection in S line.


Asunto(s)
Patos , Carne , Animales , Tamaño Corporal , Peso Corporal/genética , Cruzamiento , Proteínas del Citoesqueleto/genética , Patos/genética , Factores de Transcripción/genética
14.
BMC Genomics ; 23(1): 856, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575369

RESUMEN

BACKGROUND: The serum is rich in nutrients and plays an essential role in electrolyte and acid-base balance, maintaining cellular homeostasis. In addition, serum parameters have been commonly used as essential biomarkers for clinical diagnosis. However, little is known about the genetic mechanism of the serum parameters in ducks. RESULTS: This study measured 18 serum parameters in 320 samples of the F2 segregating population generated by Mallard × Pekin duck. The phenotypic correlations showed a high correlation between LDH, HBDH, AST, and ALT (0.59-0.99), and higher coefficients were also observed among TP, ALB, HDL-C, and CHO (0.46-0.87). And then, we performed the GWAS to reveal the genetic basis of the 18 serum biochemical parameters in ducks. Fourteen candidate protein-coding genes were identified with enzyme traits (AST, ALP, LDH, HBDH), and 3 protein-coding genes were associated with metabolism and protein-related serum parameters (UA, TG). Moreover, the expression levels of the above candidate protein-coding genes in different stages of breast muscle and different tissues were analyzed. Furthermore, the genes located within the high-LD region (r2 > 0.4 and - log10(P) < 4) neighboring the significant locus also remained. Finally, 86 putative protein-coding genes were used for GO and KEGG enrichment analysis, the enzyme-linked receptor protein signaling pathway and ErbB signaling pathway deserve further focus. CONCLUSIONS: The obtained results can contribute to new insights into blood metabolism and provide new genetic biomarkers for application in duck breeding programs.


Asunto(s)
Patos , Estudio de Asociación del Genoma Completo , Animales , Patos/genética , Patos/metabolismo , Determinismo Genético , Fenotipo , Biomarcadores/metabolismo
15.
Front Cell Dev Biol ; 10: 1041088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438573

RESUMEN

As a critical developmental stage in vertebrates, the vertebral column formation process is under strict control; however, we observed variations in the number of cervical vertebrae in duck populations in our previous study. Here, we further explored the variations in the number of vertebrae in two duck populations: 421 Pekin duck × mallard F2 ducks and 850 Pekin ducks. Using resequencing data of 125 Pekin ducks with different numbers of cervical vertebrae and 352 Pekin duck × mallard F2 ducks with different numbers of thoracic vertebrae, we detected whole-genome copy number variations (CNVs) and implemented a genome-wide association study (GWAS) to identify the genetic variants related to the traits. The findings verified the existence of variations in the number of cervical vertebrae in duck populations. The number of cervical vertebrae in most ducks was 15, while that in a small number of the ducks was 14 or 16. The number of cervical vertebrae had a positive influence on the neck production, and one cervical vertebra addition could increase 11 g or 2 cm of duck neck. Genome-wide CNV association analysis identified six CNVs associated with the number of cervical vertebrae, and the associated CNV regions covered 15 genes which included WNT10A and WNT6. These findings improve our understanding of the variations in the number of vertebrae in ducks and lay a foundation for future duck breeding.

16.
Virus Res ; 322: 198930, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36130655

RESUMEN

BACKGROUND: Duck viral hepatitis (DVH) has a significant economic impact on duck industry, and duck hepatitis A virus genotype 3 (DHAV-3) is the most prevalent pathogen of DVH in Asian duck industry. The detailed study connecting differentially expressed genes (DEGs) and the differential resistance to DHAV-3 have not been accurately described, although a large numbers of DEGs have been identified by transcriptomic studies. RESULTS: Here, a resistant Pekin duck line (Z8R) and a susceptible Pekin duck line (Z8S) as models, high mortality and dramatically increased aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the expression of immune-related genes of Z8S group were shown to be noticeable signs of cases caused by DHAV-3 infection. Compared with the control (Con) group, 1117 down-regulated DEGs and 612 up-regulated DEGs were found in the Z8S group and 37 down-regulated DEGs and 82 up-regulated DEGs were found in the Z8R group. Ultimately, the expression patterns of 10 DEGs were found to be diametrically opposite in Z8R and Z8S group. Functional analysis revealed that IFITM1 was associated with cell growth suppression, which was considered a key candidate gene. Results of flow cytometry showed that the conserved regions of IFITM1 (213-317 bp) could affected the cell cycle of duck embryo fibroblast (DEF) cells after infection with DHAV-3. Transcriptome and western blot analysis suggested that the CCND1, CCNE1 and CDK6 were significantly up-regulated in susceptible ducks by comparing with Con group. CONCLUSIONS: The hepatic injury and pathogenic outcomes caused by DHAV-3 infection were more severe in Z8S group compared to Z8R. Results of transcriptomics analysis and flow cytometry suggested that DHAV-3 infection can induce cell cycle changes that may be associated with IFITM1 expression level. These data will greatly enhance our understanding of the pathogenesis of DHAV-3 infection in ducklings and have implications for development of resistance breeding.


Asunto(s)
Virus de la Hepatitis del Pato , Hepatitis Viral Animal , Infecciones por Picornaviridae , Enfermedades de las Aves de Corral , Animales , Patos , Genotipo , Virus de la Hepatitis del Pato/genética , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/patología , Transcriptoma
17.
Anim Nutr ; 11: 1-14, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35950191

RESUMEN

Pantothenic acid deficiency (PAD) in animals causes growth depression, fasting hypoglycemia and impaired lipid and glucose metabolism. However, a systematic multi-omics analysis of effects of PAD on hepatic function has apparently not been reported. We investigated liver proteome and metabolome changes induced by PAD to explain its effects on growth and liver metabolic disorders. Pekin ducks (1-d-old, n = 128) were allocated into 2 groups, with 8 replicates and 8 birds per replicate. For 16 d, all ducks had ad libitum access to either a PAD or a pantothenic acid adequate (control, CON) diet, formulated by supplementing a basal diet with 0 or 8 mg pantothenic acid/kg of diet, respectively. Liver enlargement, elevated liver glycogen concentrations and decreased liver concentrations of triglyceride and unsaturated fatty acids were present in the PAD group compared to the CON group. Based on integrated liver proteomics and metabolomics, PAD mainly affected glycogen synthesis and degradation, glycolysis and gluconeogenesis, tricarboxylic acid (TCA) cycle, peroxisome proliferator-activated receptor (PPAR) signaling pathway, fatty acid beta oxidation, and oxidative phosphorylation. Selected proteins were confirmed by Western blotting. Downregulation of proteins and metabolites involved in glycogen synthesis and degradation, glycolysis and gluconeogenesis implied that these processes were impaired in PAD ducks, which could have contributed to fasting hypoglycemia, liver glycogen storage, insufficient ATP production, and growth retardation. In contrast, PAD also upregulated proteins and metabolites involved in fatty acid beta oxidation, the TCA cycle, and oxidative phosphorylation processes in the liver; presumably compensatory responses to produce ATP. We inferred that PAD decreased liver triglyceride and unsaturated fatty acids by activating fatty acid beta oxidation and impairing unsaturated fatty acid synthesis. These findings contributed to our understanding of the mechanisms of PAD-induced changes in hepatic metabolism.

18.
J Anim Sci Biotechnol ; 13(1): 61, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35581591

RESUMEN

BACKGROUND: Although methionine (Met), the first-limiting dietary amino acid, has crucial roles in growth and regulation of lipid metabolism in ducks, mechanisms underlying are not well understood. Therefore, the objective was to use dietary Met deficiency to investigate the involvement of Met in lipid metabolism and fat accumulation of Pekin ducks. METHODS: A total of 150 male Pekin ducks (15-d-old, 558.5 ± 4.4 g) were allocated into 5 groups (6 replicates with 5 birds each) and fed corn and soybean meal-based diets containing 0.28%, 0.35%, 0.43%, 0.50%, and 0.58% Met, respectively, for 4 weeks. Met-deficient (Met-D, 0.28% Met) and Met-adequate (Met-A, 0.43% Met) groups were selected for subsequent molecular studies. Serum, liver, and abdominal fat samples were collected to assess the genes and proteins involved in lipid metabolism of Pekin ducks and hepatocytes were cultured in vivo for verification. RESULTS: Dietary Met deficiency caused growth depression and excess fat deposition that were ameliorated by feeding diets with adequate Met. Serum triglyceride and non-esterified fatty acid concentrations increased (P < 0.05), whereas serum concentrations of total cholesterol, low density lipoprotein cholesterol, total protein, and albumin decreased (P < 0.05) in Met-D ducks compared to those in Met-A ducks. Based on hepatic proteomics analyses, dietary Met deficiency suppressed expression of key proteins related to fatty acid transport, fatty acid oxidation, tricarboxylic acid cycle, glycolysis/gluconeogenesis, ketogenesis, and electron transport chain; selected key proteins had similar expression patterns verified by qRT-PCR and Western blotting, which indicated these processes were likely impaired. In vitro verification with hepatocyte models confirmed albumin expression was diminished by Met deficiency. Additionally, in abdominal fat, dietary Met deficiency increased adipocyte diameter and area (P < 0.05), and down-regulated (P < 0.05) of lipolytic genes and proteins, suggesting Met deficiency may suppress lipolysis in adipocyte. CONCLUSION: Taken together, these data demonstrated that dietary Met deficiency in Pekin ducks resulted in stunted growth and excess fat deposition, which may be related to suppression of fatty acids transportation and hepatic catabolism.

19.
BMC Genomics ; 23(1): 236, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346029

RESUMEN

BACKGROUND: Skin pigmentation is a broadly appearing phenomenon of most animals and humans in nature. Here we used a bird model to investigate why melanin spot deposits on the skin. RESULTS: Our result showed that growth age and the sunlight might induce melanin deposition in bird beak skin which was determined by genetic factors. GWAS helped us to identify two major loci affecting melanin deposition, located on chromosomes 13 and 25, respectively. The fine mapping works narrowed the candidate regions to 0.98 Mb and 1.0 Mb on chromosomes 13 and 25. The MITF and POU2F3 may be the causative genes and synergistically affect melanin deposition during duck beak skin. Furthermore, our data strongly demonstrated that the pathway of melanin metabolism contributes to melanin deposition on the skin. CONCLUSIONS: We demonstrated that age and sunlight induce melanin deposition in bird beak skin, while heredity is fundamental. The MITF and POU2F3 likely played a synergistic effect on the regulation of melanin synthesis, and their mutations contribute to phenotypic differences in beak melanin deposition among individuals. It is pointed out that melanin deposition in the skin is related to the pathway of melanin metabolism, which provided insights into the molecular regulatory mechanisms and the genetic improvement of the melanin deposition in duck beak.


Asunto(s)
Estudio de Asociación del Genoma Completo , Melaninas , Animales , Pico/metabolismo , Patos/genética , Patos/metabolismo , Melaninas/metabolismo , Pigmentación de la Piel/genética
20.
Anim Biotechnol ; 33(7): 1646-1654, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34057401

RESUMEN

Pekin ducks are world-famous for its fast growth and have become the majority of breeds rearing in duck industry. Feed conversion ratio (FCR) is an important trait in Pekin ducks breeding and production, and the underlying biological processes are complex. To gain an insight to the possible biological mechanism underlying the FCR in Pekin ducks, an artificial selection population (S) and a natural population (Z7) were used in this study. The FCR of S line decreased from 2.184 ± 0.057 in the first generation to 1.886 ± 0.063 in the eighth generation, which displays significantly low FCR (p = 0.0032) than that of the Z7 line (2.23 ± 0.046). Then, 9 samples from eighth generation of S line and 10 samples from Z7 were used for whole-genome resequencing. Analyses of FST, θπ and XP-EHH revealed 450, 479 and 356 candidate genes, which involved in 1,955, 1,933 and 1,964 candidate divergent regions (CDRs), respectively. And the integration of three approaches resulted in 30 overlapping genes. Functional analysis of 30 candidate genes revealed that variants of KCNQ1 and ADCY7, which were involved in the pancreatic secretion signal pathway, could be important molecular markers for high feed conversion efficiency in S line breeding.


Asunto(s)
Patos , Genoma , Animales , Patos/genética , Genoma/genética , Genómica , Fenotipo , Alimentación Animal/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA