Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 117(3): 1141-1151, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38706118

RESUMEN

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.


Asunto(s)
Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovirus , Animales , Bombyx/virología , Bombyx/microbiología , Bombyx/crecimiento & desarrollo , Nucleopoliedrovirus/fisiología , Larva/virología , Larva/microbiología , Larva/crecimiento & desarrollo , Heces/microbiología , Heces/virología
2.
Insect Sci ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258370

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.

3.
Int J Biol Macromol ; 253(Pt 1): 126414, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37634785

RESUMEN

Ferritin is an iron-binding protein composed of light-chain and heavy-chain homologs with a molecular weight of about 500 kDa. Free iron ions significantly affect reactive oxygen species (ROS) accumulation. Previous research has shown that Bombyx mori nucleopolyhedrosis virus (BmNPV) can increase ROS accumulation, activate autophagy, induce apoptosis, and upregulate the expression of B. mori ferritin heavy-chain homolog (BmFerHCH). However, the mechanism of mutual regulation between BmFerHCH and ROS-mediated autophagy and apoptosis induced by BmNPV remains unclear. In this study, we found that BmNPV induced the time-dependent accumulation of ROS in BmN cells, thereby promoting BmFerHCH expression. Interestingly, in BmFerHCH-overexpressed cells, BmNPV replication was inhibited in the first 18 h after infection but stimulated after 24 h. Further research on H2O2 or antioxidant-treated cells indicated that ROS-induced autophagy slightly increased in the early infection stage and increased BmNPV replication, while in the late stage, a large accumulation of ROS induced apoptosis and inhibited BmNPV replication. In this process, BmFerHCH inhibits BmNPV-induced ROS accumulation by chelating Fe2+. Taken together, BmFerHCH regulates ROS-mediated autophagy and apoptosis to achieve its various effects on BmNPV replication. These findings will help elucidate BmNPV-induced autophagy and apoptosis mediated by ROS and BmFerHCH, as well as the mutually fighting relationship between viruses and hosts.


Asunto(s)
Bombyx , Animales , Bombyx/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Insectos/metabolismo
4.
Dev Comp Immunol ; 140: 104625, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572165

RESUMEN

The reprogramming of host physiology has been considered an essential process for baculovirus propagation. Trehalose, the main sugar in insect blood, plays a crucial role as an instant energy source. Although the trehalose level is modulated following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), the mechanism of trehalose metabolism in response to BmNPV infection is still unclear. In this study, we demonstrated that the trehalose level tended to be lower in BmNPV-infected hemolymph and higher in the midgut. The omics analysis revealed that two trehalose transporters, BmTret1-1 and BmTret1-2, and trehalase, BmTRE1 and BmTRE2, were differentially expressed in the midgut after BmNPV infection. BmTret1-1 and BmTret1-2 had the ability to transport trehalose into the cell and promoted cellular absorption of trehalose. Furthermore, the functions of BmTret1-1, BmTret1-2, BmTRE1 and BmTRE2 in BmNPV infection were analyzed. These genes were upregulated in the midgut after BmNPV infection. Virus amplification analysis revealed that these genes could promote BmNPV proliferation in BmN cells. In addition, these genes could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO in the phosphoinositide 3-kinase (PI3K)-Akt signalling pathway. Similarly, the increased trehalose level in BmN cells could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO. Taken together, BmNPV infection promote the expression of trehalose hydrolysis and transport-related genes. These changes affect the PI3K-Akt signalling pathway to facilitate BmNPV proliferation. These findings help clarify the relationship between trehalose metabolism and BmNPV infection.


Asunto(s)
Bombyx , Fosfatidilinositol 3-Quinasas , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Hidrólisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trehalosa/metabolismo , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
5.
Int J Biol Macromol ; 217: 842-852, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35905762

RESUMEN

Ferritin heavy-chain homolog (FerHCH), an iron-binding protein, plays an important role in the host defense against oxidative stress and pathogen infections. In our previous research, Bombyx mori native ferritin had an interaction with B. mori nucleopolyhedrovirus (BmNPV). However, the underlying molecular mechanism of single ferritin homolog responses to BmNPV infection remains unclear. In this study, we found that BmNPV titer and B. mori FerHCH (BmFerHCH) expression were positively correlated with the ferric iron concentration. We performed RNA interference (RNAi) and overexpression experiments to investigate the effects of BmFerHCH on BmNPV proliferation. BmFerHCH knockdown suppressed BmNPV proliferation in vivo and in vitro, whereas BmFerHCH overexpression facilitated BmNPV proliferation. In addition, the oxidative stress level was increased significantly in BmN cells after budded virus infection, while BmFerHCH could neutralize the increased ROS production induced by BmNPV. Of note, we found that ROS was involved in BmNPV-induced apoptosis. Through inhibiting ROS, apoptosis was suppressed by BmFerHCH, whereas BmFerHCH knockdown facilitated apoptosis. Therefore, we hypothesize that BmFerHCH-mediated inhibition of virus-induced apoptosis depends on suppressing ROS accumulation and, thereby, facilitates virus replication. These results suggest that BmFerHCH plays an important role in facilitating BmNPV proliferation and modulating BmFerHCH is potential strategy for studying host-pathogen interactions.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Apoferritinas/metabolismo , Apoptosis , Bombyx/genética , Proliferación Celular , Ferritinas/genética , Ferritinas/metabolismo , Nucleopoliedrovirus/genética , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...